
 1 

 

 

PREDICTIVE MODELING AND CULTURAL RESOURCE 

PRESERVATION IN SANTA CRUZ COUNTY, ARIZONA 

 

 

 

 

By 

J. Brett Hill - Center for Desert Archaeology, 300 E. University Blvd., Suite 230, 
Tucson, AZ 85705. email: bhill@cdarc.org  
 
Mathew Devitt - Center for Desert Archaeology, 300 E. University Blvd., Suite 
230, Tucson, AZ 85705 email: mdevitt@cdarc.org  
 
Marina Sergeyeva – University of Illinois, Urbana-Champaign, 109 Davenport 
Hall, 607 S. Matthews Ave., Urbana, IL 61801 email msergey2@uiuc.edu  

 
 

Learn more about the Center for Desert Archaeology at 
http://www.centerfordesertarchaeology.org/ 
 

 

 

 

 

 

Keywords: Archaeology, Cultural Resource Management, GIS, Predictive 

Modeling, North American Southwest 

 

hillb
Highlight

hillb
Highlight

hillb
Highlight

hillb
Typewritten Text
2006  - Center for Desert Archaeology, Tucson, AZ



 2 

Abstract 

 

The establishment of a Santa Cruz Valley National Heritage Area in 

southeastern Arizona presents challenges to archaeologists wishing to contribute 

to synthetic overviews of the region’s landscape history. This paper focuses on 

the use of GIS and predictive modeling to provide a concise picture of prehistoric 

land use as manifested in the archaeological record of this region. Common 

quantitative methods proved useful but technical and conceptual obstacles were 

encountered and overcome. A view of the archaeological record as one element in 

a dynamic process of contemporary landscape construction altered our modeling 

goals. We found it necessary to reconsider standard approaches to the use of 

extant data sources, derivation of environmental variables, and techniques of 

model development. Here we present new perspectives on locational bias in 

archaeological data, hydrological modeling in arid regions, and statistics for 

selection of independent variables.  
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Introduction 

 

Predictive models of archaeological site location are among the most 

attractive and useful strategies for professionals in the applied sector of our field, 

broadly referred to as cultural resource management (CRM). Using inferences 

from known archaeological sites and their environmental context to predict 

unknown site locations and to model archaeological sensitivity has become 

increasingly practical, and technical refinements in model development now make 

it relatively easy to produce models offering significant insight (e.g. Westcott and 

Brandon, eds. 2000).  Yet, several methodological and theoretical dilemmas have 

inhibited the full realization of predictive modeling potential in the management 

context. 

 At the technical level, identifying, deriving and selecting variables that 

structured past land use remains one of the most important and problematic 

aspects of model development (Ebert 2000). Many environmental attributes such 

as water availability and terrain are known to have been critical, and abundant 

digital data on these is readily available. Valuable progress on techniques for 

deriving useful indices from these data has been made (e.g. Kvamme 1985; 

Warren 1990a; Duncan and Beckman 2000). However, use of some attributes is 

still hindered by significant differences between current and past conditions, as 

well as scalar discrepancies between current mapping standards and past land use. 
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In addition, techniques for selecting from among potential subsets of significant 

variables remain problematic. 

At the conceptual level, the importance of predictive modeling for CRM is 

commonly acknowledged (e.g. papers in Sebastian and Judge, eds. 1988), but 

most literature on the method and theory behind it is dominated by an essentially 

academic goal of explaining past human behavior. Relatively little attention has 

been given to ways of integrating such research goals with other non-academic 

interests in the archaeological record. Furthermore, while the differences between 

CRM and academic research goals are sometimes acknowledged, relatively little 

attention is paid to variability within the CRM context that is also concerned with 

the present and future. 

In our work we encountered some common technical problems and 

attained solutions we hope will further advance this field. On an interpretive and 

theoretical level we found ourselves at odds with some attitudes toward predictive 

modeling that affected our goals and methodological choices in ways we think 

merit greater discussion. Our goals in this paper are threefold, to: 1) illustrate a 

simple but useful model developed with readily available tools and data, 2) offer a 

few simple technical solutions to problems we faced, and 3) address some of the 

theoretical and practical implications of the varying goals of predictive modeling.    
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Project Description 

 

 In recent years the government of Pima County, Arizona and other 

organizations developed the Sonoran Desert Conservation Plan (SDCP), including 

a Geographic Information System (GIS) for use in planning development in the 

context of rapidly increasing local population. Among the many components of 

this system is an archaeological sensitivity map of the eastern part of the county, 

where most development is occurring. This map was produced by a team of local 

archaeologists with detailed knowledge, who manually drew maps of areas they 

knew to have high concentrations of cultural resources. This map was integrated 

with other information in the GIS to enable the county government to evaluate 

spatial relationships among cultural resources and other aspects of the 

environment affecting policy and planning. 

A recent initiative to establish a National Heritage Area (NHA) in the 

Santa Cruz Valley prompted a renewed interest in the SDCP archaeological 

sensitivity map and a desire to produce something comparable for Santa Cruz 

County. Eastern Pima County comprises the lower (northern) portion of the Santa 

Cruz Valley as conceived for the NHA, and Santa Cruz County comprises the 

upper (southern) portion of the valley. Unlike Pima County, Santa Cruz County 

did not have a comparable archaeological sensitivity map. The NHA feasibility 

study, however, required thematic maps of the entire area as a single management 
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entity. Given budgetary and time constraints, we were required to use existing 

data and available tools to produce such a map. Based on information acquired 

from public sources including the United States Geological Survey (USGS), the 

Arizona State Land Department (ASLD), and the AZSITE Arizona archaeological 

sites database, and using ArcGIS software, we developed a predictive model of 

archaeological sensitivity. Our GIS software was provided with significant 

assistance from an ESRI Conservation Grant. 

An important aspect of this project was the need to produce maps of 

resources relevant to the specific goals of developing of the NHA. Furthermore 

these maps needed to provide a sense of the resources as they were integrated into 

a set of interpretive themes. Ten themes were described including seven with a 

cultural orientation. These included: Sky Islands and Desert Seas, Streams in the 

Desert, Bird Habitats and Migration Routes, Native American Lifeways (11,000 

B.C. to present), Desert Farming (2000 B.C. to present), Ranching Traditions 

(1680 to present), Spanish and Mexican Frontier (1680 to 1854), Mining Booms 

(1680 to present), U.S. Military posts on the Mexico Border (1856 to present), 

and U.S. – Mexico Border Culture (1854 to present).  

Of these, Native American Lifeways and Desert Farming are directly 

related to our modeling and are focused on prehistoric settlement and land use. 

Most of the themes also emphasize various aspects of life along the river oases 

that are so prominent in this desert environment and provide the unifying 
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principle for the NHA. Demonstrating in a clear and concise way the 

archaeological aspects of this relationship between land use and the Santa Cruz 

River system was a key focus of the present analysis.  

The larger goal of the NHA designation is to develop heritage and nature 

tourism in the area. Estimated impacts of increased tourism resulting from the 

NHA designation are approximately $1.8 billion and 40,000 new jobs over the 

first ten years. Given that this development is focused in large part on the cultural 

resources of the area, it is necessary to both illustrate where those resources are 

located and how they will be affected by increased activity. This goal is limited 

by the still unknown elements of the archaeological record.  

A good deal is currently known about cultural resources in the area but 

more remains to be discovered and incorporated into our understanding of the 

region’s past. For example, the importance of this area in the early development 

of agriculture and sedentary life in North America remained unknown until recent 

highway salvage work revealed deeply buried deposits in the river floodplain (e.g. 

Gregory 2001; Mabry 1998). Thus a model of our current knowledge of potential 

deposits and their relationship to likely environmental variables structuring other 

heritage tourism themes was a desired product to illustrate the unique and 

significant contribution of the Santa Cruz Valley to American heritage. We found 

this model served our purpose well and is an example of what can be done with 

commonly available data and software. In the process, however, we were 
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confronted with a number of technical and conceptual issues that had to be 

addressed. 

 

Practical and Theoretical Implications of Prediction 

 

 An essential question in discussions of predictive modeling concerns the 

matter of what is being predicted. Emphasis is typically on the ability of 

archaeologists to accurately predict and hence explain patterns in the 

archaeological record (Ebert and Kohler 1988). What this view undervalues is the 

role of predictive modeling in understanding the articulation of past and future 

land use, which is a vital objective in many CRM contexts and is an area in which 

prediction takes on a more dynamic role. It is also noted that quantitative site 

location studies of the type described here are more correlational than predictive 

(Savage 1990). This terminology holds important implications for the potential 

goal of modeling as it broadens our perspective to include any spatial correlation 

between the archaeological record and other landscape qualities of interest. In our 

project in Santa Cruz County we found that this shift in perspective had 

significant implications for model development. 

 A central dichotomy in different approaches to predictive modeling 

concerns the role of explanation. The importance of explanation may be neglected 

in predictive models developed in a CRM context, on the assumption that it is not 
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necessary to understand site location decisions to effectively predict site locations 

and manage resources. Conversely, most argue that explanation is the primary 

goal of prediction and that efforts toward predictive models without explanation 

are misplaced (Kohler and Parker 1986, Gaffney and van Leusen 1995). Part of 

the problem with simple prediction is that it is perceived as a vacuous 

mathematical exercise in the absence of a higher purpose that justifies the expense 

of public funds. As Kohler and Parker (1986:42) note, “Sites are not worthwhile 

ends in themselves, but the understanding of human behavior and development 

that can be extracted from them is.”  

Current historic preservation laws and regulations emphasize the 

importance of information potential and most CRM work is developed with an 

explanatory research design. The importance of information potential in CRM is 

supported in concept and by its prevalent use as the criterion for designating sites 

eligible for inclusion in the National Register of Historic Places (NRHP) in the 

U.S. (Sebastian and Judge 1988a). This emphasis on information and 

understanding is evident in most academic and CRM work and constitutes a valid 

goal. It does not follow, however, that this is the only valid end for archaeological 

predictive modeling and it is a consideration of alternative ends that emphasizes 

the value of alternative approaches to methodological issues (Gaffney and van 

Leusen 1995). 



 10 

 There are multiple valid interests in the archaeological record and the most 

effective ways to serve these are not necessarily the strict goal of explaining the 

past. Approaches to predictive modeling that emphasize such explanation may 

under-serve other interests. Lipe (1984) indicates for example, that cultural 

resources have four different kinds of value including informational (research), 

economic (market value), aesthetic (contemporary appeal) and associative 

(sentimental or familiar). He argues that management of resources will involve 

competition among interest groups emphasizing different values. Van Leusen 

(1995) echoes this view in a predictive modeling context, arguing that 

archaeological resources have economic value (as tourist attractions) and 

landscape value (to remind us of our roots and their time depth), in addition to 

scientific value (telling us something about the human past).  

In the U.S., native people have a strong interest in the archaeological 

record that may diverge substantially from the goal of scientific explanation, and 

their primary reason for wanting to protect ancient sites is typically not to save 

them for future information gathering (see Swidler et al., eds. 1997). While such 

conflicts of interest are often perceived to stem from fundamentally different 

worldviews, similar divergences occur within the Euro-American community 

interested in historic preservation. To take a simple example from our region, 

saving the last Hohokam ballcourt from destruction would be of questionable 

scientific value, yet few archaeologists would dispute the merit of such a plan. A 
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growing sense of the economic, landscape and political values of the 

archaeological record requires a broadened perspective on predictive modeling. 

From this perspective it might be argued that sites are, in fact, a worthwhile end in 

themselves. 

Carver (1996) revisits the question of archaeological value to explore the 

integration of research with competing interests. He argues that ultimately all 

other values are derived from research that informs us about what is important or 

relevant about the archaeological record. We argue that this perspective is too 

narrowly shaped by a contemporary European context that fails to accommodate 

the wide variety of reasons people around the world have valued remains of the 

past throughout millennia. Carver does, however, make the important point that 

even in a research context the importance of the archaeological record is a fluid 

matter, dependent on current conditions and “in a state of continual redefinition” 

(1996:55). This flux results from social and theoretical concerns that are 

constantly changing and whose future is unknowable. Carver’s observation is 

provided in support of a policy that emphasizes the still unknown aspects of the 

archaeological record, and the ever-changing interface between that record and 

equally unknown future research values. 

This enlarged sense of the value of cultural resources alters the role of 

prediction in a number of important ways (van Leusen 1995; Dore and 

Wandsnider 2005). Among the requirements of modeling in this context are maps 
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focusing on landscapes and deposits instead of sites, attention to formation 

processes that affect the future of resources, and the potential for rapid, large-

scale iterative model development using readily available tools and data. In 

addition, modeling for alternative needs may affect issues such as sample 

selection and quantitative approaches. These requirements are not irrelevant to 

academic research, but the CRM context makes their practical solution a more 

urgent concern and may alter the cost/benefit of striving for a tenuous and 

problematic explanation whose value is likely temporary. Improved predictive 

success can be achieved through strategies that do not necessarily improve our 

current understanding of past cultures. In fact such understanding may be 

tangential to primary goals of preservation and conservation.  

As part of a broader political effort, the model described here must clearly 

convey the richness of our record of the past and, relatively simply, a sense of 

how that record is integrated with other resources. These messages would not be 

well served by a treatise on the subtleties of site function during different periods 

or the complex processes involved in decision making by ancient peoples. Rather, 

the desired product is one with which archaeologists are able to accurately 

illustrate our current understanding of places of importance in the region’s human 

history. This product will then be integrated with complementary efforts by 

ethnographers and historians, natural scientists representing ecological interests, 

and current land and business owners in the area. This combination of views is 



 13 

necessary to fill out our understanding of the landscape and its value. We must 

then communicate our results effectively to a wide audience, including policy 

makers and the public.  

To effectively accomplish these goals we must be applied anthropologists, 

fully engaged with the community and mindful of our work in a larger context 

(Pyburn and Wilk 1995).  One of our major challenges in this type of work is to 

identify sensitive locations, or that part of the archaeological record that faces 

imminent threat of conflict with other dynamic elements in the community. 

Furthermore, the model we develop must be recognized as a single step in an 

evolving process for which many future models will be required to address the 

constantly changing nature of the present as articulation of past and future. 

 

Study Area 

 

 Santa Cruz County is located in southeastern Arizona adjacent to the U.S.-

Mexico border (Figure 1). It comprises an area of approximately 3200 km2 of 

Basin and Range topography with elevation ranging from 900 m asl to 2880 m 

asl. The dominant geographic feature in the region is the Santa Cruz River, which 

begins in Arizona, flows into Sonora, Mexico, and then curves west and north to 

re-enter Arizona and flow toward its confluence with the Gila River in south-

central Arizona. The other dominant geographic features of the area are the Santa 
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Rita and Patagonia Mountains that flank the river valley and contribute a large 

portion of its flow. The region is dominated by Sonoran and Chihuahuan Desert 

vegetation, except in the mountain elevations where Madrean evergreen woodland 

contains relict Pleistocene flora and fauna typical of cooler and wetter climates 

(Brown 1994; Deaver and Van West 2001). Annual precipitation in the area 

ranges from 300 mm in the low desert to 900 mm in the higher elevations.  

 Culturally the area has been the location of human habitation since the 

early stages of New World occupation over 12 kya, and several Paleo-Indian sites 

are recorded here. It is also the location of Archaic and Early Agricultural Period 

sites, and an ideal riverine setting for the introduction of domesticates to the 

region approximately 3.5-4 kya (MacWillams 2001). During the last centuries 

before European contact what is now Santa Cruz County was on the border 

between the Hohokam and Trincheras culture areas. When the first European 

explorers arrived the area was occupied by Piman groups, whose descendents still 

live here. Overall there is good evidence that some parts of the area were 

occupied fairly consistently for several thousand years, and many areas of 

occupation in earlier times are still the primary loci of occupation today.  
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Analytical Techniques 

 

 Over the last two decades of research using GIS and statistical approaches 

to settlement analysis, several techniques for model development have been 

described in the archaeological literature. The dominant form of model to emerge 

from this literature is one in which attributes of the environmental context of 

archaeological sites are subjected to statistical analyses evaluating correlation 

among variables. One popular and robust statistical technique is logistic 

regression (Kvamme 1983; Parker 1985; Warren 1990b), which has proven to be 

a powerful and easily interpreted method when appropriate data are available. 

Advantages of logistic regression include fewer assumptions about the 

distribution of independent variables, and output ranging from 0-1 that can be 

interpreted as a probability. Furthermore, logistic regression is suitable for use 

with binary dependent variables and a range of independent types, including 

categorical variables common in environmental studies.  

The logistic regression method in predictive modeling emphasizes the 

attributes of land parcels rather than sites and produces a probability surface 

reflecting the likelihood of a given parcel being a desirable location for past land 

use. This emphasis on land parcels makes possible binary description of the 

dependent variable as site vs. non-site. Many descriptions of logistic regression 

and its strengths are available in the literature and several examples of its use have 
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been published (e.g. Kvamme 1985; Carmichael 1990; Duncan and Beckman 

2000; Warren and Asch 2000).  

 

Archaeological Data 

 Information on site locations and survey projects in Santa Cruz County 

was obtained from AZSITE and the Arizona State Museum (ASM). We focused 

on pre-European contact period sites because a separate effort was under way to 

identify historic properties and it was unnecessary and probably inadvisable to 

model their locations (Kvamme 1988a). We narrowed our scope to habitation 

sites because these are likely to represent the broadest range of activities relevant 

to the stated interpretive themes, and they reduce the necessity to identify 

numerous site functional types with survey data. The identification of habitation 

sites was typically a judgment call based on the original recorders’ interpretation 

or on criteria identified in the site description. This process resulted in a set of 160 

pre-contact, habitation sites deemed to be most representative of past land use and 

of cultural resources needing protection. 

 For non-site locations we used archaeological survey polygons obtained 

from the AZSITE database comprising 148 projects covering over 70.58 km2 and 

representing approximately 2 percent of the area of Santa Cruz County (See 

Figure 2 for locations of sites and survey areas). A non-site was defined as any 

area where survey did not reveal the presence of archaeological resources. To 
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address concerns about the actual range of activities around sites, and to increase 

differences among site and non-site attributes, 3 km buffers were constructed 

around all site locations. Areas inside this distance were removed from 

consideration as non-site locations. The concept of site location and boundary is 

problematic in archaeological predictive modeling (Ebert and Kohler 1988; Ebert 

2000). Nonetheless, the logistic regression method and a binary response variable 

necessitate such an approach.  

Limiting non-site locations to those areas over 3 km from confirmed sites 

helps alleviate uncertainty about the actual range of site activities that may 

structure concentrations of material remains. This distance represents a minimum 

distance used by settled agriculturalists in their pursuit of most resource extraction 

and represents a cutoff between activities associated with a habitation site and 

areas not perceived as attractive for such activities. Non-site areas were converted 

to point locations at 200 m grid spacing to create a set of data with attribute 

association comparable to site locations. This process resulted in the identification 

of 310 non-site locations distributed broadly across Santa Cruz County.  

 The use of data such as these in a statistical model poses problems of 

interpretation because they are biased and do not represent a random sample. This 

is a common problem for researchers attempting to use existing data and efforts to 

compensate for such bias have been explored (Kvamme 1988b; Massagrande 

1995). The importance of having a random sample is to provide a representative 
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set of locations for statistical analysis, and the common view would be that a 

biased sample would provide biased results. It is necessary, however, to consider 

more closely the question of bias and representativeness in this case. For many 

purposes it would be desirable to have a sample of locations that was 

representative of the full range of past land use. The use of unrepresentative data 

in model development would risk missing important and unknown aspects of 

behavior. Some have argued that it is precisely these unknown elements that are 

most important because they provide the most new information (Altschul 1988, 

1990). For the current project, however, this poses less of a problem and existing 

bias may, in fact, be used to advantage. 

 The importance of a representative sample rests on an assumption that it is 

past land use we desire to explain. However, if our goal is to model the 

articulation of past land use with current and future land use, the existing sample 

may be appropriate for our needs. While it is not a random sample, it is 

representative of recent and contemporary interest in the landscape from a 

development point of view. The distribution of known sites and modern 

archaeological surveys in this region are a good reflection of the range of interest 

it has received over the last several decades. The variable scrutiny received by 

different areas is an indication of how much activity has occurred and is likely to 

occur in the near future.  
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The goal of producing a sensitivity map suggests a desire to identify 

cultural resources that are subject to imminent effect by development, and 

modeling sensitivity requires consideration of both the resources and development 

trends. Bias inherent in much existing archaeological data produced by CRM may 

essentially be considered a weighting factor for threat level. Rather than apply 

techniques to correct for this bias, we chose to use it strategically, emphasizing 

those areas most likely to be impacted by developments in the near future.   

 

Environmental Data 

Obtaining and developing useful environmental data can be the most time 

consuming and costly aspect of a predictive modeling project. While some 

projects are able to include collection of environmental data in conjunction with 

archaeological survey, our project constraints did not allow for such an integrated 

approach. Rather, we were forced to use available data that was typically 

collected for quite different purposes and recorded at a scale that may be 

inappropriate for use in modeling some aspects of prehistoric land use (Crumley 

and Marquardt 1990; Allen 2000). One of our principal needs was to derive 

meaningful attributes from these data and still discriminate useful variation 

among geographic attributes. Our study would generally fall into a regional 

classification, in which broad environmental characteristics such as soil, climate 

and vegetation are thought to structure settlement choices (Allen 2000). 
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The primary sources of digital environmental data for this region are the 

Arizona Land Resources Information System (ALRIS), and the United States 

Geological Survey (USGS), both of which provide free data for use in non-

commercial applications (See Table 1 for description of data layers used). Slope 

and flow accumulation data were derived in ArcGIS from the DEM using the 

Spatial Analysis extension and the ArcHydro data model. These data were further 

developed using neighborhood statistics to more appropriately reflect qualities in 

the vicinity of sites that would affect their suitability. This approach utilizing 

neighborhood attributes more closely follows the goals of a landscape approach to 

modeling (Church et al. 2000). We calculated the neighborhood mean of elevation 

and slope within 200 m of site and non-site locations. 

 
Table 1. Environmental Data Used in Models 

Map Layer Source Scale Origin Comment 

Vegetation ALRIS 1:126,720 Brown and Lowe 1974 
10 plant communities in 
Santa Cruz County 

Springs ALRIS 1:24,000 USGS Geonames database 
171 spring locations in 
Santa Cruz County 

Geology  ALRIS 1:1,000,000 Reynolds 1988 

34 combinations of 
bedrock and surface 
characteristics in Santa 
Cruz County 

Soils USGS 1:250,000 

National Resource Conservation 
Service (NRSC), State Soil 
Geographic Database (STATSGO) 

48 soil units in Santa 
Cruz County  

Terrain 
(DEM) USGS 1:24,000 National Elevation Dataset (NED) 30m grid resolution 
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One especially important consideration in site location that is difficult to address 

with standard hydrography data is the availability of water. In the desert 

southwest, this was an important consideration for prehistoric settlers, and it is a 

particularly troublesome thing to identify with current data in a way that reflects 

actual availability. Standard hydrography data available from sources such as the 

USGS do not adequately indicate the subtle variation in water availability in the 

desert and do not address differences between current conditions and those in the 

past. Simple distinctions between perennial and ephemeral streams, or methods of 

identifying stream order do little to indicate the actual quantity and timing of 

water availability that are critical to human uses. Furthermore, a great deal of 

change in surface water availability has occurred over time, particularly in the last 

century as modern uses have affected flow characteristics and the water table.  

In the present analysis, for example, only two small segments of the many 

streams in the area were identified as perennial with the rest considered 

ephemeral. It is well documented in the historic literature that there was a much 

more extensive perennial flow in the larger streams of this region (Castetter and 

Bell 1942; Dobyns 1981). In addition, the mean distance to any stream from sites 

used in these analyses was 294 m, compared to 303 m for non-site locations. A 

three percent difference in distance to ephemeral water sources hardly reflects its 

importance in this desert region and would provide minimal utility in 

discriminating among likely settlement locations. To best identify hydrologically 
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useful locations would require a laborious paleoenvironmental study emphasizing 

geomorphological evidence of past fluvial conditions. In the absence of such a 

study, we focused on hydrological modeling as the best way to understand the 

relative availability of water to prehistoric settlers. 

 Hydrological modeling characterizes the direction and accumulation of 

flow based on terrain. The size of watershed is one of the most important qualities 

affecting the amount of water that flows in a given drainage. Based on the slope 

and aspect of each pixel in relation to its neighbors in the DEM, it is possible to 

calculate the total area that flows into each pixel, or its flow accumulation. Again, 

this is a quantity most usefully described as a neighborhood statistic, as sites were 

typically situated near, rather than in locations of high accumulation.  

A neighborhood sum was used to indicate the total area of watershed 

contributing to hydrologic flow within 1 km of a site location. This measure 

characterizes the amount of flow available in close proximity to a settlement and 

reflects variable availability as the distance from sites to drainages increases. 

Furthermore it emphasizes the importance of locations at stream confluences that 

have been noted as persistent places (see Schlanger 1992). Stream confluences 

both increase the area of high flow potential within such a radius and reflect the 

importance of tributaries in raising water table levels and creating more regular 

flow. The calculation of the neighborhood statistic resulted in a mean flow 

accumulation in the vicinity of sites that is more than 127 times greater than the 
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mean for non-site vicinities, and appears far more indicative of the variable 

availability of water and its relative importance in this environment. Because of 

the shape of the distribution of the accumulated flow variable, it was log 

transformed to produce a better correlation with site distribution.  

 Each of the environmental variables described above was then assigned to 

the collection of sites and non-sites by location to produce a table for statistical 

analysis. All are important qualities potentially affecting the choice of a location 

for settlement. Chi-square and Kolmogorov-Smirnov tests were used to evaluate 

correlations between each of these variables and the site/non-site distinction, and 

all were found significant at the 95 percent level. Examination of this list of 

variables, however, suggests that the factors that structure their geographic 

distribution are often overlapping and hence not completely independent. For 

example, the distribution of vegetation communities is closely related to terrain 

qualities including elevation and aspect. In truth, very little that is recorded as an 

environmental variable is independent of all other environmental variables. Much 

of what has structured human settlement patterns is inter-related in complex ways 

with multiple environmental qualities that make simple correlations impossible. 

 

Statistical Techniques 

 An important consideration in any multivariate statistical model is which 

variables to include and different goals entail different considerations. One 
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approach is to minimize the number of variables used for an explanatory model 

because too many variables may saturate or over-parameterize a model. 

Furthermore, as noted above, many environmental variables are not truly 

independent and, while their addition may produce high statistical correlations, it 

provides relatively little gain in explanatory value. Thus, some techniques seek to 

minimize the number of variables used in order to focus on those variables with 

the greatest explanatory power. Predictive models developed for management 

purposes, however, are not as constrained by explanatory needs, but rather strive 

for improved predictive efficiency to enhance planning. In such cases a larger 

number of variables may provide a better model because they increase the 

accuracy of predictions and focus on a smaller area, improving model efficiency.  

 A common technique used in regression models to select the most 

appropriate variables is stepwise selection, in which variables are added or 

removed from a model in steps based on a pre-established P value of significant 

model improvement. Stepwise regression, however, has come under criticism in 

recent years (Raftery 1995). One problem identified in archaeological applications 

is that different sets of variables may be indicated depending on the sample and 

stepwise procedure (Kvamme 1988a). Such difficulties are evident in the present 

analyses, in which different sets of variables are indicated for a randomly selected 

sample of 100 sites and 100 non-sites than for the complete sample. Furthermore, 

different sets are indicated for backward versus forward stepwise selection in both 
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the random and the complete samples. Some aspects of model performance using 

different variable subsets indicated by stepwise procedures are evaluated below. 

Because of dissatisfaction with stepwise procedures, sociologists have 

developed techniques relying on information criteria statistics that can aid model 

selection. In particular, Bayesian hypothesis testing with the use of the Bayesian 

Information Criteria (BIC) approximation (Schwarz 1978; Raftery 1995) has 

proven useful, especially in models using categorical data. The BIC 

approximation provides a useful means of evaluating and comparing the 

information value of competing models. The BIC approximation is calculated by 

Raftery (1995:134) as follows: 

 

BIC = -LRT + pk log n 

 

where LRT = Log Likelihood Ratio,  pk  =  number of degrees of freedom (or 

independent variables), and n = number of cases. 

 

The most negative BIC indicates the best model choice. Other information criteria 

approximations may also provide useful results and can be used with stepwise 

procedures for models with large numbers of independent variables resulting in 

overwhelming combination possibilities (Shtatland et al. 2001). For present 
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purposes a modest number of independent variables were available and we used 

the BIC evaluation. 

 The final critical aspect of these analyses is assessing the performance of 

different models. A useful and simple technique for evaluating model 

performance is the gain statistic presented by Kvamme (1988a:329) and defined 

as: 

 

Gain = 1 - (percentage of total area covered by model/percentage of total sites 

within model area) 

 

Model utility is scaled from low to high on a scale of 0 to 1. 

 

This statistic provides a sense of the efficiency of prediction as a function of area 

and is useful for comparing models developed using different techniques. For 

example, one model may correctly predict more sites than another, but at the 

expense of including greater area, and hence is not more efficient.  

 Another key to assessing model performance entails the establishment of a 

cutpoint. The logistic regression statistic is scaled continuously from 0 to 1 and it 

is necessary to establish a point along that continuum at which a value is 

considered a positive or negative prediction. The most straightforward cutpoint 

establishes any value above .5 as a positive prediction and any value below as 
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negative. This approach, however, does not address distinctions between wasteful 

and gross errors (Altschul 1988). Wasteful errors result from inefficient models 

and incorrectly identify areas of high probability. Gross errors result from failure 

to identify high probability locations and are considered a greater problem, as 

they may result in the destruction of important cultural resources. For this reason 

selection of cutpoint probabilities that optimize desired predictions may be 

preferable. For example, in a management/preservation context we may desire a 

model that accurately predicts at least 90 percent of site locations.  

Model evaluation also presents important problems with regard to data 

sampling. To avoid wasting valuable information the best possible model that can 

be developed typically uses all site and non-site points (Kvamme 1988a). Ideally 

a second set of independent data would be produced with which to evaluate model 

performance. In the present case, and in most CRM contexts, it is not feasible to 

produce a second set of independent data for evaluation within a useful time 

frame. Alternatives include testing with the same data used to build the model, 

and splitting the sample, with one subset used for development and the second for 

evaluation. In the first case, evaluations of performance are often overly 

optimistic and do not reflect actual predictive power with independent data. In the 

second case, splitting the sample diminishes the performance of the model 

because not all information is used. This is particularly problematic with small 
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data sets. Different approaches were used here and their relative merits will be 

discussed further below. 

 

Results and Discussion 

 

 In this section we present results using different variables as indicated by 

stepwise versus BIC procedures, and using complete versus split samples. To 

begin, we focus on results using the complete data set but different subsets of 

independent variables. Using the BIC approximation to determine the best model, 

a combination including: flow accumulation, elevation, distance to springs, soils, 

and vegetation was found to have the best score of -476.  

In contrast, the stepwise regression technique resulted in different variable 

selection depending on whether a forward or backward step was used. For the 

forward step with a P value of .05 to enter, flow accumulation, geology and soils 

were indicated. For comparative purposes this combination resulted in a BIC 

score of –430. For a backward stepwise approach only flow accumulation and 

elevation were indicated, resulting in a BIC score of -468.   

The stepwise procedure is problematic in that two different sets of 

variables were selected depending on the procedure, making it difficult to 

ascertain which one might be the preferred choice. Moreover, neither set indicated 

by the stepwise technique provided the optimal BIC score. The variables indicated 
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for the BIC model not only provide greater predictive power but seem more 

intuitively useful as well. Both soils and vegetation seem to be important qualities 

to settlers in this area and thus are logical to include in a model. In contrast, the 

geological distinctions provided by these data seem less likely to have been an 

important factor and hence seem inappropriate to displace soils and vegetation in 

our model.  

Our forward stepwise model performed poorly and this method is thought 

to be an inferior choice (Shtatland et al. 2001), and thus is not discussed further. 

Here we compare the results of the BIC model and the backward stepwise model. 

Applying the regression formula to selected variables, and adjusting the constant 

for different sample sizes (Warren 1990), produced probability maps illustrated in 

Figures 3 and 4. 

 With the BIC model mean probability estimates for site locations are .97 

and for non-site locations are .03, indicating generally strong discrimination 

between location types. The stepwise model produced a mean probability of .87 

for site locations and 0.07, which is not quite as strong but still respectable. Using 

a .5 cutpoint probability the BIC model correctly predicted 98 percent of the sites 

and 98 percent of the non-site, whereas the stepwise model correctly predicted 90 

percent of sites and 97 percent of the non-sites. 

 Examining frequencies of correct predictions at different cutpoint 

probabilities further illustrates some of the differences between the two models. 
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Figure 3. Map of BIC Approximation Model Correctly Predicting 90 Percent of Known Sites.

Figure 4. Map of Backward Stepwise Model Correctly Predicting 90 Percent of Known Sites.
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To correctly predict at least 90 percent of the site locations, a cutpoint probability 

of .96 is required with the BIC model, indicating any location with a value below 

.96 as a negative prediction and any value above as positive. A more conservative 

cutpoint of .40 is required with the stepwise model. Using a .96 cutpoint in the 

BIC model still correctly predicts 100 percent of the non-sites, while the .40 

cutpoint in the stepwise model correctly predicts 95 percent of non-sites. 

 Reclassifying the probability surface in the GIS to reflect negative or 

positive prediction based on these cutpoint values provides a means of calculating 

the gain statistic suggested by Kvamme (1988a). The area designated positive by 

the BIC model is 21.4 percent of the total, while the positive area in the stepwise 

model is 22.4 percent, providing gains of 76 percent and 75 percent respectively. 

While the gain provided by the two models is essentially the same, the BIC model 

appears to perform slightly better especially at minimizing wasteful errors while 

achieving a desired predictive power. In addition, the BIC model more accurately 

characterizes the importance of the Santa Cruz River valley where most land use, 

both ancient and modern, seems to be concentrated. For example, the emphasis 

apparent particularly in the upper reaches of the Santa Cruz Valley corresponds 

well with findings of other researchers documenting biodiversity and other indices 

of natural resource wealth (Center for Desert Archaeology 2004). This emphasis 

in the model is driven by recent focus on this area and illustrates the connections 

between current interest and archaeological sensitivity. 
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 As a final element of our analysis we present the BIC model based on a 

split random sample of 100 sites and 100 non-sites, leaving a portion of the data 

for independent model evaluation. As noted above, the same five variables 

received the best BIC score using the random sample as with the complete 

sample. To correctly predict at least 90 percent of site locations a cutpoint of .94 

is required, resulting in a positive area of 39 percent and a gain statistic of 59 

percent. This is a decrease from the 76 percent indicated with the full data set, but 

still represents a substantial gain. 

 The question remains which model to use for our current purpose of 

defining archaeologically sensitive areas of Santa Cruz County for planning and 

implementing a National Heritage Area designation. While the model based on a 

smaller random sample allows for better evaluation of performance we prefer the 

model based on the complete data set. The same subset of variables is used in 

both models, supporting concordant inferences that hydrology, elevation, soils 

and vegetation were important environmental qualities structuring land use. In 

addition, both models appear to have a quite similar distribution across the 

landscape, again supporting a concordant view of the importance of the Santa 

Cruz River valley in the settlement of this area. However, the larger dataset 

utilizes significantly more information and provides a more efficient model 

focusing on only 21 percent of the area as opposed to 39 percent for the smaller 

dataset. It might be argued that the full dataset is overly particular, fitting the 
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model to idiosyncrasies of the data, and hence is not as generalizable. In the 

present context, though, it is precisely the particulars of this area that are our 

focus in nominating the area for NHA designation. The general explanatory value 

of the model is shifted from why people did things the way they did in the past, to 

how a landscape that was important to them is still important to people living here 

today. Consequently, a model that more exactly represents how past land use in 

this place articulates with present land use is desirable. 

 Despite our current need to settle on a particular model illustrating this 

articulation, it is essential to consider modeling as an ongoing, iterative process. 

First, our current project is only a feasibility study and will be followed by 

continued effort as the NHA designation advances. Ultimately, much more 

detailed management plans may require more elaborate modeling efforts and 

consideration of new variables as we strive to clarify our understanding of more 

particular problems and relationships. Second, our understanding of the 

archaeology of this region is certain to improve dramatically as more research is 

conducted in coming years. Development is certain to expand greatly in the area, 

changing the articulation of past and present interests. The present model cannot 

be considered a final word on archaeological sensitivity in Santa Cruz County. 

Rather we hope that our efforts and the lessons learned will serve as a productive 

foundation for continued work. We are encouraged that this initial project has 

offered a useful model and numerous valuable insights into the modeling process. 



 33 

  

Conclusions 

 

 Predictive modeling has long held promise as a powerful tool to help 

archaeologists understand patterns of land use. Technological improvements in 

methodology, computing power and data access now make useful modeling a 

practical goal for many in our field. In the project described here we were able to 

use readily available data and technology to produce a model offering significant 

insight into the ways in which the landscape of southeastern Arizona articulates 

past and contemporary land use. We are able to produce a map depicting those 

areas in Santa Cruz County most susceptible to the conflicting goals of preserving 

and highlighting our unique past, and future economic development. For this we 

are indebted to a generation of archaeologists who have developed techniques and 

raised important questions about predictive modeling. At the same time, we 

encountered new challenges and solutions to problems many in our field may find 

useful. We hope the present discussion offers some value in three areas of 

predictive modeling in archaeology. 

 First, the matter of water availability is a critical factor in many parts of 

the world and tools for hydrological modeling in GIS offer valuable methods for 

more accurately assessing the variable availability of water across a landscape. 

We used a fairly simple approach quantifying accumulated flow with good 
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success. This approach can be improved in the future with more complex 

modeling of variable precipitation and geology in different drainages that also 

affect the amount of surface water available. 

 Second, the matter of archaeological data for model development is 

problematic particularly for small projects with limiting financial and schedule 

constraints. In many areas abundant archaeological data may be available that has 

been perceived as unsuitably biased for modeling purposes. While others offer 

useful suggestions for addressing bias in archaeological data, we argue that in 

some CRM contexts this bias may be turned to advantage as a weighting factor 

emphasizing contemporary threats to cultural resources. The bias in existing data 

may thus offer a useful measure of threat sensitivity that is important in managing 

and preserving these resources. 

 Finally, selection of appropriate variables has been a challenging aspect of 

model development that has been unsatisfactorily met through stepwise 

techniques. Methods such as the Bayesian Information Criterion approximation 

offer useful ways to assess the utility of variables for inclusion. The BIC 

approximation avoided problems of forward versus backward stepwise 

procedures, and of using different samples of the dataset. Models indicated by the 

BIC appeared to provide as good or better predictive power and gain than models 

indicated by the stepwise procedure, and were intuitively more satisfying.  
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In preservation archaeology the goal of predictive modeling is no longer 

simply explaining past behavior but how that behavior influences the present and 

takes on contemporary economic, political and ideological value. Substantial 

amounts of money and effort are currently devoted to the preservation and 

recognition of cultural resources in the U.S. and many other countries. If this 

trend is any indication of value as perceived by society, then diverse approaches 

to predictive modeling that offer efficient and timely maps of past land use 

become important elements in our view of the historical landscape. The current 

project was initiated as part of a larger heritage tourism and preservation effort 

and requires a focus on the ways that past land use are integrated with current 

land use, and to an increasing degree will structure future land use.  It is, in fact, 

the express purpose of this effort to create a model of the landscape as a product 

of the past to structure the future. This is not a model of the past to simply inform 

us, but an active effort to shape the future in a particular way.  

Debates about predictive modeling in archaeology often revolve around 

whether environmental projection in the absence of deeper explanation is a valid 

endeavor. This debate is typically framed by an assumption that explanation is the 

only valid goal and therefore models that do not adequately accomplish this goal 

simply mask our ignorance. We argue that this assumption misses a separate but 

important goal. Archaeologists are not simply in the business of explaining why 

people did what they did in the past, and we do not here pretend to offer new 
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knowledge on this subject. Instead we argue that part of our job as archaeologists 

is to inform a public interested in balancing preservation and development about 

where these goals interact and conflict with one another. To answer “What are we 

learning that we didn’t already know?” we do not simply need to explain the past 

better, but rather to explain where the past will impact, and be impacted by a 

future we predict will still care. 
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