# BINOCULAR AND PETROGRAPHIC ANALYSIS OF POTTERY FROM YUMA WASH

Mary F. Ownby, Desert Archaeology, Inc. Carlos P. Lavayen, Desert Archaeology, Inc. Elizabeth J. Miksa, Southwest Petrographic Specialists, Inc.

The results of binocular and petrographic examination of pottery from the Desert Archaeology, Inc., excavation at the Yuma Wash site are presented here. The geologic background of the Tucson Basin and the specific setting of the site are discussed first. The results of the binocular temper identification are presented, followed by the petrographic temper assessment. Next, the results of the discriminant model run on the point-count data acquired petrographically are discussed, along with the relationship between the binocular temper identification, petrographic assignment, and discriminant model petrofacies prediction. Some attempt was made to relate the petrographic results to the sherd assemblage as a whole through the binocular temper group designations; however, for reasons discussed below, this was challenging. Finally, the implications of this work are outlined, and the results are related to previous ceramic and petrographic analyses. The goal of this study was to assess the degree to which ceramics were made locally at the Yuma Wash site and the extent of exchange of ceramics within the Tucson Basin during the Hohokam Classic period (A.D. 1150-1450).

## **GEOLOGIC SETTING**

The geology of the Tucson Basin is characterized by the Basin and Range setting in the southern part of Arizona (Chronic 1983:25-39). This comprises linear north-south or northwest-southeast trending mountain ranges with deep sediment-filled basins between them. The ranges bordering the Tucson Basin include the Tortolita Mountains to the northwest, the Santa Catalina Mountains to the north, the Rincon Mountains to the east, the Empire Mountains to the southeast, the Santa Rita Mountains to the south, the Sierrita Mountains to the southwest, and the Tucson Mountains to the west.

The basement Proterozoic rocks, primarily granites, granite-gneisses, gneisses, and schists, formed approximately 1.7-1.4 billion years ago (Nations and Stump 1997). They are found predominantly in the Tortolita, Catalina, and Rincon mountains. Paleozoic era sedimentary rocks, such as sandstone, siltstone, mudstone, and limestone, are rare in the Tucson Basin. They are mostly found in small outcrops in the Empire, Santa Rita, and Sierrita mountains. Volcanic activity in the Mesozoic era resulted in many outcrops of felsic and intermediate igneous rocks, found mostly in the Tucson and Sierrita mountains. Smaller volcanic outcrops are located in the Catalina, Rincon, and Santa Rita mountains, as well as on the western side of the Tortolita Mountains.

At the beginning of the Cenozoic era, the largescale tectonic extension of the western North Ameri-

can crust created normal faulting, which produced the long narrow mountain ranges (horsts) and deep basins (graben) seen today. Additionally, the granite and gneiss beneath the Tortolita-Catalina-Rincon complex was pushed upwards. This caused the sedimentary rocks to erode away, while the volcano top moved toward the west. The Sierrita and Santa Rita mountains also feature an underlying granite batholith, although in these cases, a volcano erupted through this layer. The remaining Cenozoic era featured the mass deposition of sediments within the basin as the mountains underwent erosion. Although some similar rocks are present in most of the ranges, the locations and types of volcanic activity have created notable differences. In addition to the geographic separation of the individual mountains, this results in each range consisting of a unique suite of rocks that form distinctive sands when eroded. This is the basis for petrofacies, that is, petrographic facies, modeling in the Tucson Basin.

Several rivers traverse the basin, most notably the Santa Cruz River, flowing northward and joining the Gila River near Phoenix. Major tributaries include Rillito Creek and the Cañada del Oro. Smaller washes feed into these tributaries and bring sediments into the basin from the mountain ranges.

## SITE SETTING

The Yuma Wash site is located on an active, late Holocene alluvial fan, the T1 geomorphic unit (McKittrick 1988), and within the floodplain of the Santa Cruz River (Figure K.1) (Huckleberry 2005; Katzer and Schuster 1984; also, Chapter 2, this volume). The alluvial fan material is primarily volcanic, composed of different rhyolites deriving from the Tucson Mountains and comprising the Wasson (J3) Petrofacies (Kring 2002). The Tucson Mountain eastern piedmont, where the Yuma Wash site is located, encompasses a large catchment area of approximately 30 km<sup>2</sup>, reaching as far as the slopes of Wasson Peak. The rapid runoff close to the mountains slows into many distributary channels or broad sheetflow as it reaches the Santa Cruz River, eventually integrating with other alluvial fans.

These channels carry material from the older Pleistocene surfaces located near the mountains and contain gravels and coarse sands. As the channels reach the floodplain, their sediments become finer and create a broad area of thin deposits overlaying older sediments, including flood deposits from the Santa Cruz River. Particularly where Yuma Wash itself has cut into the alluvial fan, these micaceous, fine-textured flood deposits are exposed underneath the alluvial sediments. Archaeological remains vis-

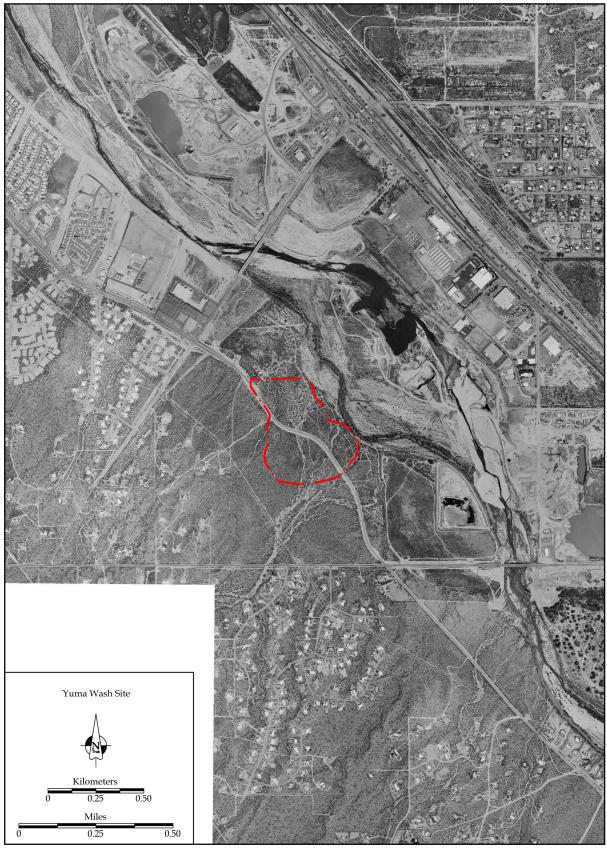



Figure K.1. View of the Yuma Wash site, showing alluvial fan and Santa Cruz River.

ible in the cut suggest that the creation of an alluvial fan over the flood deposits allowed human habitation in the area where the floodplain is roughly 1-2 km wide between the Tucson Mountain and Tortolita piedmonts. Near the Yuma Wash site, downstream from Rillito Creek and the Cañada del Oro, the main channel of the Santa Cruz River flows on the western side of the floodplain. Importantly, before moving back to the eastern side, past Yuma Wash, this channel cuts the edge of the Yuma Wash alluvial fan. Thus, an area where alluvial fan and flood deposits co-occur exists near the site. Further, this dynamic geomorphic area would have resulted in frequent changes to the landscape that may have affected the history of the site.

## **BINOCULAR ANALYSIS**

Binocular analysis was conducted on 5,488 sherds to establish the type and origin of their temper. The sherds were analyzed by three individuals and divided into three projects. Acronyms used in this report include the following.

(1) MAR3: most of the non-mortuary sherds from the eastern portion of the AZ AA:12:312 (ASM) locus; examined by C. Lavayen.

(2) TOM1: all the ceramic material from the AZ AA:12:311 (ASM) locus and all the mortuary ceramics from the AZ AA:12:314 (ASM) site; examined by J. Heidke.

(3) TOM2: non-mortuary sherds from the AZ AA:12:122 (ASM) locus and the western portion of AA:12:312, as well as sites AA:12:314 and AZ AA:12:1047 (ASM); examined by T. Clark.

Because the petrographic analysis of the pottery was carried out to verify the temper identifications made by these individuals, the discussion of the binocular and petrographic results are divided by project.

Decorated wares and plain ware sherds that were not body sherds were selected for binocular analysis. Body sherds accounted for 54 percent of the assemblage, while rim sherds were 28 percent. The remaining 18 percent included handles, shoulders, bases, and indeterminate vessel parts. Most of the sherds were from bowls or jars (36 percent and 25 percent, respectively). The remainder were either indeterminate, or from scoops, pitchers, cups, and other vessel shapes (31 percent and 8 percent, respectively).

Tucson Basin Red-on-brown types were the dominant category of the selected sample comprising, 51.9 percent for all three projects (MAR3 = 57.7 percent; TOM1 = 45.2 percent; TOM2 = 75.6 percent) (Table K.1). The next most common were plain ware types at 40.7 percent (MAR3 = 36.3 percent; TOM1 = 46.5 percent; TOM2 = 19.8 percent). Red ware types were 3.3 percent (MAR3 = 4.4 percent; TOM1 = 3.4 percent; TOM2 = 1.8 percent), while the Salado Polychrome types made up 1.1 percent (MAR3 = 0.9 percent; TOM1 = 1.3 percent; TOM2 = 0.7 percent). The remaining wares, termed "Other," were less common, and together, comprised 3.0 percent (MAR3 = 0.7 percent; TOM1 = 3.6 percent; TOM2 = 2.1 percent).

As a whole, the analyzed corpus was tempered primarily with sand, 67.4 percent, comprising 73.5 percent of MAR3 sherds, 61.3 percent of TOM1 sherds, and 88.1 percent of TOM2 sherds (Table K.2). Other common tempering materials were sand and grog, at 4.5 percent (MAR3 = 6.4 percent; TOM1 = 4.2 percent; TOM2 = 3.8 percent), gneiss/schist and muscovite mica, at 3 percent (MAR3 = 5.8 percent; TOM1 = 3.0 percent; TOM2 = 0.8 percent), and mixed sand and muscovite mica, at 2.7 percent (MAR3 = 10.3 percent; TOM1 = 1.3 percent; TOM2 = 2.4 percent). Less common tempering materials were present at 5.4 percent (MAR3 = 4.0 percent; TOM1 = 6.3 percent; TOM2 = 3.9 percent). Indeterminate tempering materials comprised 16.9 percent (MAR3 = 0.0 percent; TOM1 = 24.0 percent; TOM2 = 1.1 percent).

Sand temper was seen in most of the wares, as was temper composed of sand and grog, gneiss/ schist and muscovite mica, and mixed sand and muscovite mica. The plain ware sherds were dominated by sand temper, but had the greatest variety of temper types (Table K.3). Tucson Basin Red-onbrown ware sherds were overwhelmingly sand tempered, 90 percent of samples, with other temper types present below 5 percent (Table K.4). More than half the red ware ceramics contained sand, although these sherds also had a high percentage of temper types with metamorphic rock fragments (Table K.5). The Salado Polychrome ceramics were all sand tempered except two with mixed sand and muscovite mica, and one with mostly sand and some metamorphic rock fragments (Table K.6). Expectedly, the Hohokam Buff wares typically had temper composed of metamorphic rock fragments, such as gneiss or schist. The more unusual wares often had indeterminate or more rare tempering materials, although 56 percent had sand temper (Table K.7). Overall, most wares were tempered with more than one material type.

In cases where the temper was assigned a more specific type, the most common was indeterminate plutonic sand, seen in 10.7 percent of the whole assemblage, in 7.2 percent of MAR3 sherds, 8.8 percent of TOM1 sherds, and 21.4 percent of TOM2 sherds (Table K.8). Another fairly common temper Table K.1. Sherds analyzed during binocular analysis, separated by project, the Yuma Wash site.

| Ware                                                            | MAR3   | TOM1    | TOM2 | Total    |
|-----------------------------------------------------------------|--------|---------|------|----------|
| Plain                                                           | 271    | 1,774   | 180  | 2,225    |
| Vahki Plain                                                     | 0      | 1       | 0    | 1        |
| Stucco Plain                                                    | 0      | 1       | 0    | 1        |
| San Carlos Plain                                                | 0      | 3       | 1    | 4        |
| Unknown intrusive plain ware (to Hohokam area)                  | 0      | 1       | 0    | 1        |
| Total plain ware                                                | 271    | 1,780   | 181  | 2,232    |
| Fucson Basin Rillito Red-on-brown                               | 0      | 10      | 1    | 11       |
| Fucson Basin Rillito or Rincon red-on-brown                     | 0      | 1       | 0    | 1        |
| Fucson Basin Rillito or Early Rincon red-on-brown               | 0      | 2       | 0    | 2        |
| Fucson Basin Early or Middle Rincon red-on-brown                | 0      | 1       | 0    | 1        |
| Sucson Basin Early or Middle or Late Rincon red-on-brown        | 0      | 1       | 0    | 1        |
| Fucson Basin Late Rincon Red-on-brown                           | 0      | 0       | 2    | 2        |
| Fucson Basin Rincon or Tanque Verde red-on-brown                | 11     | 24      | 34   | 69       |
| Fucson Basin Late Rincon or Tanque Verde red-on-brown           | 75     | 71      | 111  | 257      |
| Fucson Basin Tanque Verde Red-on-brown                          | 226    | 1,207   | 406  | 1,839    |
| Fucson Basin Middle or Late Rincon or Tanque Verde red-on-brown | 25     | 80      | 2    | 107      |
| Fucson Basin Indeterminate Preclassic red-on-brown              | 0      | 9       | 0    | ç        |
| Fucson Basin Indeterminate red-on-brown                         | 94     | 324     | 133  | 551      |
| Fucson Basin Post-Cañada Del Oro red-on-brown                   | 0      | 0       | 2    | 2        |
| Total Tucson Basin red-on-brown                                 | 431    | 1,730   | 691  | 2,852    |
| San Carlos Red                                                  | 6      | 10      | 0    | -,       |
| Fortolita Red                                                   | 3      | 5       | 0    |          |
| /ahki Red                                                       | 0      | 1       | 0    | 1        |
| Gila Red                                                        | 0      | 1       | 1    | -        |
| iells Red                                                       | 1      | 2       | 1    | 4        |
| /alshni or Sells red                                            | 1      | 5       | 1    | 7        |
| Classic period red                                              | 1      | 5       | 3    | ,<br>C   |
| ndeterminate Classic period red                                 | 0      | 0       | 3    | 3        |
| ndeterminate red                                                | 21     | 101     | 7    | 129      |
| Total red ware                                                  | 33     | 130     | 16   | 179      |
| alado Polychrome, Tonto                                         | 0      | 3       | 0    | 175      |
|                                                                 | 0      | 6       | 0    | 6        |
| alado Polychrome, Cliff<br>alado Polychrome, Gila               | 0<br>1 | 11      | 4    | 16       |
| -                                                               | 5      | 0       | 4    | 10<br>51 |
| alado Polychrome, Pinto or Gila                                 | 0      |         | 0    | í        |
| alado Polychrome, Gila or Tonto                                 |        | 0<br>29 |      | 31       |
| alado Polychrome, indeterminate                                 | 1      |         | 1    |          |
| Total Salado Polychrome                                         | 7      | 49      | 6    | 62       |
| ndeterminate Red-on-brown or plain ware                         | 0      | 4       | 6    | 10       |
| ndeterminate Red-on-brown or red ware                           | 1      | 3       | 0    | 4        |
| ndeterminate red or plain ware                                  | 1      | 35      | 2    | 38       |
| an Carlos Red-on-brown                                          | 0      | 4       | 0    | 4        |
| an Carlos Brown ware, polished and unpainted                    | 0      | 0       | 5    | 5        |
| Canque Verde Polychrome, black and red                          | 0      | 2       | 0    | 2        |
| anque Verde Polychrome, indeterminate                           | 0      | 1       | 0    | 1        |
| Brown corrugated, clapboard                                     | 0      | 18      | 0    | 18       |
| Brown corrugated, flattened                                     | 0      | 16      | 1    | 17       |
| Brown corrugated, obliterated                                   | 0      | 7       | 1    | 8        |
| Brown corrugated, indented                                      | 0      | 1       | 0    | 1        |
| Brown corrugated, indented obliterated                          | 0      | 9       | 0    | ç        |
| rown corrugated, other                                          | 0      | 1       | 0    | 1        |

| Table K.1. Continued. | Tabl | e K.1. | Continued. |
|-----------------------|------|--------|------------|
|-----------------------|------|--------|------------|

| Ware                                                          | MAR3 | TOM1  | TOM2 | Total |
|---------------------------------------------------------------|------|-------|------|-------|
| Brown corrugated, indeterminate                               | 1    | 4     | 0    | 5     |
| Possible Salado Red corrugated                                | 0    | 0     | 1    | 1     |
| Mogollon corrugated, indeterminate                            | 1    | 0     | 0    | 1     |
| Hohokam Snaketown or Gila Butte red-on-buff/gray              | 0    | 1     | 0    | 1     |
| Hohokam Gila Butte or Santa Cruz or Early Sacaton red-on-buff | 0    | 1     | 0    | 1     |
| Hohokam Middle or Late Sacaton or Casa Grande red-on-buff     | 0    | 1     | 0    | 1     |
| Hohokam Santa Cruz Red-on-buff                                | 0    | 5     | 0    | 5     |
| Hohokam Santa Cruz or Early Sacaton red-on-buff               | 0    | 1     | 0    | 1     |
| Hohokam Casa Grande Red-on-buff                               | 1    | 3     | 0    | 3     |
| Hohokam Unidentified red-painted on buff                      | 0    | 4     | 0    | 4     |
| Hohokam Unidentified, no paint                                | 0    | 3     | 0    | 3     |
| Cibola White Ware, Tularosa or Pinedale black-on-white        | 0    | 1     | 0    | 1     |
| Cibola White Ware, Pinedale Black-on-white                    | 0    | 5     | 3    | 8     |
| Cibola White Ware, undifferentiated Pueblo II                 | 0    | 1     | 0    | 1     |
| Cibola White Ware, undifferentiated Pueblo II or III          | 0    | 1     | 0    | 1     |
| Cibola White Ware, indeterminate black-on-white               | 0    | 4     | 0    | 4     |
| Little Colorado or Cibola white ware, indeterminate no paint  | 0    | 1     | 0    | 1     |
| Papago Plain                                                  | 0    | 1     | 0    | 1     |
| Papago Red                                                    | 0    | 1     | 0    | 1     |
| Total Other                                                   | 5    | 139   | 19   | 163   |
| Total                                                         | 747  | 3,828 | 913  | 5,488 |

Table K.2. Temper types for all sherds analyzed during binocular analysis, by project, the Yuma Wash site.

| Temper Type                                   | MAR3 | TOM1  | TOM2 | Total |
|-----------------------------------------------|------|-------|------|-------|
| Sand                                          | 549  | 2,346 | 804  | 3,699 |
| Gneiss/schist and muscovite mica              | 43   | 113   | 7    | 163   |
| Sand and grog                                 | 48   | 162   | 35   | 245   |
| High muscovite mica                           | 8    | 44    | 6    | 58    |
| Low LMT <sup>a</sup> /high sand               | 1    | 9     | 1    | 11    |
| Mixed sand and muscovite mica                 | 77   | 49    | 22   | 148   |
| Mixed sand, gneiss/schist, and muscovite mica | 2    | 10    | 7    | 19    |
| Sand and fiber                                | 0    | 2     | 0    | 2     |
| Sand, schist, and grog                        | 7    | 0     | 0    | 7     |
| Grog and schist                               | 0    | 0     | 1    | 1     |
| High LMT                                      | 0    | 75    | 9    | 84    |
| High LMT/low sand                             | 4    | 73    | 1    | 78    |
| High phyllite                                 | 8    | 25    | 10   | 43    |
| Indeterminate                                 | 0    | 920   | 10   | 930   |
| Total                                         | 747  | 3,828 | 913  | 5,488 |

<sup>a</sup>LMT = Lithic metamorphic tectonic; that is, schist or gneiss.

was plutonic or metamorphic core complex sand identified in 7.1 percent of the sherds (MAR3 = 1.3 percent; TOM1 = 8.8 percent; TOM2 = 4.9 percent). Plutonic and mixed lithic sand from the Black Mountain (K) Petrofacies was noted in 6.5 percent of the sherds (MAR3 = 4.6 percent; TOM1 = 8.3 percent; TOM2 = 0.3 percent), while indeterminate plutonic and mixed lithic sand was present at 6.2 percent (MAR3 = 11.0 percent; TOM1 = 3.4 percent; TOM2 = 13.9 percent). Volcanic sand was less common, with 4.1 percent having indeterminate volcanic sand (MAR3 = 3.5 percent; TOM1 = 3.2 percent; TOM2 = 8.5 percent), and 8.9 percent with Twin Hills (J2) Petrofacies sand (MAR3 = 3.6 percent; TOM1 = 11.5 percent; TOM2 = 2.4 percent) found just south of the Yuma Wash site. However, almost half, 42.2 percent of the temper in the sherds, was not identified more specifically (MAR3 = 0.0 percent; TOM1

| Table K.3. Temper types, | by project, for p | lain ware sherds, the | Yuma Wash site. |
|--------------------------|-------------------|-----------------------|-----------------|
|--------------------------|-------------------|-----------------------|-----------------|

| Temper Type                                   | MAR3 | TOM1  | TOM2 | Total |
|-----------------------------------------------|------|-------|------|-------|
| Sand                                          | 136  | 608   | 129  | 873   |
| Gneiss/schist and muscovite mica              | 34   | 87    | 5    | 126   |
| Sand and grog                                 | 22   | 119   | 8    | 149   |
| High muscovite mica                           | 4    | 37    | 4    | 45    |
| Low LMT <sup>a</sup> /high sand               | 0    | 7     | 1    | 8     |
| Mixed sand and muscovite mica                 | 60   | 39    | 16   | 115   |
| Mixed sand, gneiss/schist, and muscovite mica | 2    | 7     | 7    | 16    |
| Sand and fiber                                | 0    | 0     | 0    | 0     |
| Sand, schist, and grog                        | 6    | 0     | 0    | 6     |
| Grog and schist                               | 0    | 0     | 1    | 1     |
| High LMT                                      | 0    | 27    | 0    | 27    |
| High LMT/low sand                             | 4    | 2     | 7    | 13    |
| High phyllite                                 | 3    | 8     | 2    | 13    |
| Indeterminate                                 | 0    | 839   | 1    | 840   |
| Total                                         | 271  | 1,780 | 181  | 2,232 |

<sup>a</sup>LMT = Lithic metamorphic tectonic; that is, schist or gneiss.

Table K.4. Temper types, by project, for Tucson Basin Red-on-brown ware sherds, the Yuma Wash site.

| Temper Type                                   | MAR3 | TOM1  | TOM2 | Total |
|-----------------------------------------------|------|-------|------|-------|
| Sand                                          | 389  | 1,535 | 657  | 2,581 |
| Gneiss/schist and muscovite mica              | 4    | 5     | 0    | 9     |
| Sand and grog                                 | 23   | 18    | 24   | 65    |
| High muscovite mica                           | 3    | 6     | 0    | 9     |
| Low LMT <sup>a</sup> /high sand               | 0    | 2     | 0    | 2     |
| Mixed sand and muscovite mica                 | 10   | 3     | 2    | 15    |
| Mixed sand, gneiss/schist, and muscovite mica | 0    | 2     | 0    | 2     |
| Sand and fiber                                | 0    | 0     | 0    | 0     |
| Sand, schist, and grog                        | 0    | 0     | 0    | 0     |
| Grog and schist                               | 0    | 0     | 0    | 0     |
| High LMT                                      | 0    | 21    | 0    | 21    |
| High LMT/low sand                             | 0    | 69    | 0    | 69    |
| High phyllite                                 | 2    | 3     | 0    | 5     |
| Indeterminate                                 | 0    | 66    | 8    | 74    |
| Total                                         | 431  | 1,730 | 691  | 2,852 |

<sup>a</sup>LMT = Lithic metamorphic tectonic; that is, schist or gneiss.

= 50.4 percent; TOM2 = 42.5 percent)<sup>1</sup>. The remaining sherds had a variety of sand temper from other volcanic, plutonic, metamorphic core complex, or mixed lithic sources.

The plain ware sherds were made primarily with volcanic (Twin Hills or indeterminate) or plutonic (indeterminate or with mixed lithic) sand, with a lesser amount containing sand from either plutonic or metamorphic core complex sources (Table K.9). In contrast, Tucson Basin Red-on-brown ware sherds had predominantly sand derived from plutonic and mixed lithic sources, and some with plutonic or volcanic sand temper (Table K.10). The red ware sherds were mostly tempered with plutonic sand (Table K.11). Examples with either plutonic or metamorphic core complex sand, or volcanic sand were also present. Salado Polychrome sherds were generally tempered with volcanic sand, although plutonic and plutonic or metamorphic core complex sands were also identified (Table K.12). Notably, many of the Brown Corrugated and Tanque Verde Polychrome sherds had volcanic sand from the Twin Hills Petrofacies, possibly suggesting production not far from the Yuma Wash site. This contributed to the high percentage of "Other" wares with volcanic sand,

<sup>&</sup>lt;sup>1</sup>That 0.0 percent were indeterminate for the MAR3 sherds, while the other projects had 50.4 and 42.5 percent, reflects a difference in how the analysts assigned the temper to categories.

| Temper Type                                   | MAR3 | TOM1 | TOM2 | Total |
|-----------------------------------------------|------|------|------|-------|
| Sand                                          | 15   | 72   | 8    | 95    |
| Gneiss/schist and muscovite mica              | 4    | 17   | 1    | 22    |
| Sand and grog                                 | 3    | 13   | 1    | 17    |
| High muscovite mica                           | 1    | 0    | 2    | 3     |
| Low LMT <sup>a</sup> /high sand               | 0    | 0    | 0    | 0     |
| Mixed sand and muscovite mica                 | 6    | 2    | 1    | 9     |
| Mixed sand, gneiss/schist, and muscovite mica | 0    | 1    | 0    | 1     |
| Sand and fiber                                | 0    | 0    | 0    | 0     |
| Sand, schist, and grog                        | 1    | 0    | 0    | 1     |
| Grog and schist                               | 0    | 0    | 1    | 1     |
| High LMT                                      | 0    | 10   | 1    | 11    |
| High LMT/low sand                             | 0    | 0    | 1    | 1     |
| High phyllite                                 | 3    | 10   | 0    | 13    |
| Indeterminate                                 | 0    | 5    | 0    | 5     |
| Total                                         | 33   | 130  | 16   | 179   |

Table K.5. Temper types, by project, for red ware sherds, the Yuma Wash site.

<sup>a</sup>LMT = Lithic metamorphic tectonic; that is, schist or gneiss.

Table K.6. Temper types, by project, for Salado Polychrome sherds, the Yuma Wash site.

| Temper Type                                   | MAR3 | TOM1 | TOM2 | Total |
|-----------------------------------------------|------|------|------|-------|
| Sand                                          | 5    | 49   | 5    | 59    |
| Gneiss/schist and muscovite mica              | 0    | 0    | 0    | 0     |
| Sand and grog                                 | 0    | 0    | 0    | 0     |
| High muscovite mica                           | 0    | 0    | 0    | 0     |
| Low LMT <sup>a</sup> /high sand               | 1    | 0    | 0    | 1     |
| Mixed sand and muscovite mica                 | 1    | 0    | 1    | 2     |
| Mixed sand, gneiss/schist, and muscovite mica | 0    | 0    | 0    | 0     |
| Sand and fiber                                | 0    | 0    | 0    | 0     |
| Sand, schist, and grog                        | 0    | 0    | 0    | 0     |
| Grog and schist                               | 0    | 0    | 0    | 0     |
| High LMT                                      | 0    | 0    | 0    | 0     |
| High LMT/low sand                             | 0    | 0    | 0    | 0     |
| High phyllite                                 | 0    | 0    | 0    | 0     |
| Indeterminate                                 | 0    | 0    | 0    | 0     |
| Total                                         | 7    | 49   | 6    | 62    |

<sup>a</sup>LMT = Lithic metamorphic tectonic; that is, schist or gneiss.

while the Hohokam Buff wares often featured schist as a part of the temper (Table K.13).

Although these results speak to the diversity of the assemblage in terms of tempering materials used, it should be noted that the different analysts did not always assign temper to the same categories, which is why the results are presented by project in the same table. However, more of the temper was thought to derive from a plutonic or plutonic and mixed lithic source than from a volcanic source. Temper materials from a metamorphic origin were the least common. This likely reflects the presence of an unusual sand, noted during the binocular inspection and discussed further below, which contains small grains of volcanic rock fragments in addition to a few large granite and granite to gneiss fragments that would have been more noticeable. Within the wares, the common volcanic sand in the plain wares seems indicative of their local production, while the red wares had sand from a more plutonic origin, possibly suggesting they were nonlocal. The Tucson Basin Red-on-brown sherds often contained a plutonic and mixed lithic sand, which may be the local unusual sand specially utilized for producing local decorated types. Based on the binocular results, the Salado Polychrome types may have been produced near the site, but are also likely to have been imported. To test these initial hypotheses, petrographic analysis was conducted on a selection of the sherds examined by binocular microscopy.

| Temper Type                                   | MAR3 | TOM1 | TOM2 | Total |
|-----------------------------------------------|------|------|------|-------|
| Sand                                          | 4    | 82   | 5    | 91    |
| Gneiss/schist and muscovite mica              | 1    | 4    | 1    | 6     |
| Sand and grog                                 | 0    | 12   | 9    | 21    |
| High muscovite mica                           | 0    | 1    | 0    | 1     |
| Low LMT <sup>a</sup> /high sand               | 0    | 0    | 0    | 0     |
| Mixed sand and muscovite mica                 | 0    | 5    | 2    | 7     |
| Mixed sand, gneiss/schist, and muscovite mica | 0    | 0    | 0    | 0     |
| Sand and fiber                                | 0    | 2    | 0    | 2     |
| Sand, schist, and grog                        | 0    | 0    | 0    | 0     |
| Grog and schist                               | 0    | 0    | 0    | 0     |
| High LMT                                      | 0    | 17   | 1    | 18    |
| High LMT/low sand                             | 0    | 2    | 0    | 2     |
| High phyllite                                 | 0    | 4    | 1    | 5     |
| Indeterminate                                 | 0    | 10   | 0    | 10    |
| Total                                         | 5    | 139  | 19   | 163   |

Table K.7. Temper types, by project, for other ware sherds, the Yuma Wash site.

<sup>a</sup>LMT = Lithic metamorphic tectonic; that is, schist or gneiss.

## PETROGRAPHIC ANALYSIS

A stratified random sample was selected based on the ware and the type of temper in the sherds, determined during the binocular analysis. Each ware-temper group was sampled in proportion to its representation in the data set. Thus, samples for petrographic analysis included 25 plain ware (9 MAR3, 10 TOM1, 6 TOM2), 71 Tucson Red-onbrown, mostly Tanque Verde (15 MAR3, 26 TOM1, 30 TOM2), and a few less common wares, such as 1 Mogollon Corrugated (MAR3), 2 Brown Corrugated (TOM1), 1 Stucco Plain ware (TOM1), 3 red ware (1 TOM1, 2 TOM2), and 2 Salado Polychrome (1 TOM1, 1 TOM2) (Table K.14).

As far as temper, the types encompassed by these samples were mostly sand temper, 18 from MAR3, 38 from TOM1, and 34 from TOM2. Other temper types included seven samples (3 MAR3, 1 TOM1, 3 TOM2) with mixed sand and muscovite mica, two samples (TOM1) with high muscovite mica, two samples (MAR3) with gneiss/schist and muscovite mica, and four samples (2 MAR3, 2 TOM2) with sand and crushed sherd. Sand temper was seen throughout the different wares, while the tempers with high muscovite mica seemed to be found mostly in plain wares.

Many different temper generic and specific sources identified during the binocular analysis were tested petrographically. Twenty-one samples (5 MAR3, 12 TOM1, 4 TOM2) had volcanic sands that were thought to be from the Beehive (J1), Twin Hills (J2), or Wasson (J3) petrofacies, or were indeterminate. Two MAR3 samples had sand that was mixed volcanic and granitic. Seventeen samples (6 MAR3, 2 TOM1, 9 TOM2) had plutonic sands from either the Sierrita (O) Petrofacies or indeterminate. An additional six samples (4 MAR3, 2 TOM1) with this generic sand source were determined to have sand from the Central Tortolita (E2), Eastern Tortolita (E3) or Sutherland (S) petrofacies. Twenty-one samples (4 MAR3, 12 TOM1, 5 TOM2) had plutonic and mixed lithic sands from either an indeterminate source or the Black Mountain (K) Petrofacies. Seven samples (4 TOM1, 3 TOM2) had indeterminate plutonic or metamorphic core complex sands, although one was believed to be from the Sutherland Petrofacies. Four samples (2 TOM1, 2 TOM2) had indeterminate plutonic or plutonic and mixed lithic sand. Four samples (2 MAR3, 2 TOM1) had metamorphic core complex sands mostly from an indeterminate source, except for one specified as from the Catalina (B) Petrofacies. The two MAR3 sherds with this temper source had mixed sand and muscovite mica temper. Likewise, two MAR3 sherds with gneiss/schist and muscovite mica temper were assigned as indeterminate crushed rock for the temper source. The remaining 21 samples (5 TOM1, 16 TOM2) had an indeterminate generic and specific source for their temper.

As clearly seen, there is a wide variety of temper sources within the samples, which reflects that seen in the corpus as a whole. The selected samples also cover the most common sand types identified during the binocular analysis and they were selected specifically to test these temper groups. The resulting 105 sherds included 25 from MAR3, 41 from TOM1, and 39 from TOM2.

Each section was prepared in the normal way, including feldspar staining and a cover slip (Miksa and Heidke 2001). C. Lavayen point counted the

| Temper                                      | MAR3 | TOM1  | TOM2 | Total |
|---------------------------------------------|------|-------|------|-------|
| Volcanic, Beehive                           | 15   | 44    | 2    | 61    |
| Volcanic, Twin Hills                        | 27   | 440   | 22   | 489   |
| Volcanic, Wasson                            | 62   | 11    | 0    | 73    |
| Volcanic, indeterminate                     | 26   | 122   | 78   | 226   |
| Plutonic, Western Tortolita                 | 4    | 9     | 0    | 13    |
| Plutonic, Central Tortolita                 | 3    | 18    | 0    | 21    |
| Plutonic, Eastern Tortolita                 | 99   | 0     | 0    | 99    |
| Plutonic, Sierrita                          | 99   | 0     | 0    | 99    |
| Plutonic, Sutherland                        | 1    | 32    | 0    | 33    |
| Plutonic, indeterminate                     | 54   | 337   | 195  | 586   |
| Plutonic or metamorphic core complex        | 10   | 336   | 45   | 391   |
| Metamorphic core complex, Cañada del Oro    | 1    | 0     | 0    | 1     |
| Metamorphic core complex, Rincon            | 1    | 0     | 0    | 1     |
| Metamorphic core complex, Catalina          | 16   | 5     | 1    | 22    |
| Metamorphic core complex, Catalina Volcanic | 3    | 0     | 0    | 3     |
| Metamorphic core complex, indeterminate     | 53   | 28    | 5    | 86    |
| Other metamorphic source                    | 5    | 0     | 0    | 5     |
| Mixed volcanic and granitic, Rillito        | 15   | 0     | 0    | 15    |
| Mixed volcanic and granitic, indeterminate  | 80   | 1     | 0    | 81    |
| Mixed volcanic, granitic, and sedimentary   | 4    | 0     | 0    | 4     |
| Plutonic or plutonic/mixed lithic           | 0    | 43    | 47   | 90    |
| Plutonic and mixed lithic, Cienega Creek    | 2    | 0     | 0    | 2     |
| Plutonic and mixed lithic, Airport          | 1    | 0     | 0    | 1     |
| Plutonic and mixed lithic, Black Mountain   | 34   | 318   | 3    | 355   |
| Plutonic and mixed lithic, indeterminate    | 82   | 130   | 127  | 339   |
| Crushed rock                                | 40   | 0     | 0    | 40    |
| Santan/Gila Butte schist and sand           | 0    | 7     | 0    | 7     |
| Naturally schistose sand                    | 8    | 0     | 0    | 8     |
| Coarse muscovite schist                     | 2    | 12    | 0    | 14    |
| "Microgranite"                              | 0    | 7     | 0    | 7     |
| Indeterminate                               | 0    | 1,928 | 388  | 2,316 |
| Total                                       | 747  | 3,828 | 913  | 5,488 |

**Table K.8.** Temper generic and specific sources for all sherds analyzed during binocular analysis, by project, the Yuma Wash site.

samples, provided a qualitative description, and assigned a petrofacies. The method for point counting was based on the modified Gazzi-Dickinson technique (Lombard 1987a; Miksa and Heidke 2001). This procedure involves point counting the monocrystalline mineral grains and the grains in coarsegrained rocks as the mineral phase to which they belong, while fine-grained rocks are classified according to their fabric, internal texture, and mineral composition. This method aims to reduce the effects of sand maturity, so that minerals in coarse-grained rocks are counted in a similar manner whether they are still a part of the rock or have separated out due to the distance the grains have travelled from the source. This is particularly important when comparing sand-tempered sherds and sand collected recently as the exact location along a wash where the

potter collected the sand is unknown. The pointcounted parameters and their definitions are given in Table K.15. The recorded qualitative attributes are listed in Table K.16. For each sample, the point-count and qualitative data are presented in Tables K.17 and K.18, respectively.

## STATISTICAL ANALYSIS

Data from point counting the thin sections were examined by discriminant analysis based on the 2010 Tucson Basin petrofacies model<sup>2</sup> (Figure K.2). This model is generally the same as that presented for the Julian Wash site, AZ BB:13:17 (ASM) (Miksa

<sup>&</sup>lt;sup>2</sup>Data on file at Desert Archaeology, Inc.

| Temper                                      | MAR3 | TOM1  | TOM2 | Total |
|---------------------------------------------|------|-------|------|-------|
| Volcanic, Beehive                           | 5    | 15    | 0    | 20    |
| Volcanic, Twin Hills                        | 18   | 209   | 9    | 236   |
| Volcanic, Wasson                            | 23   | 7     | 0    | 30    |
| Volcanic, indeterminate                     | 10   | 49    | 21   | 80    |
| Plutonic, Western Tortolita                 | 1    | 6     | 0    | 7     |
| Plutonic, Central Tortolita                 | 1    | 14    | 0    | 15    |
| Plutonic, Eastern Tortolita                 | 25   | 0     | 0    | 25    |
| Plutonic, Sierrita                          | 21   | 0     | 0    | 21    |
| Plutonic, Sutherland                        | 0    | 26    | 0    | 26    |
| Plutonic, indeterminate                     | 18   | 87    | 47   | 152   |
| Plutonic or metamorphic core complex        | 7    | 174   | 23   | 204   |
| Metamorphic core complex, Cañada del Oro    | 0    | 0     | 0    | 0     |
| Metamorphic core complex, Rincon            | 0    | 0     | 0    | 0     |
| Metamorphic core complex, Catalina          | 12   | 2     | 0    | 14    |
| Metamorphic core complex, Catalina Volcanic | 1    | 0     | 0    | 1     |
| Metamorphic core complex, indeterminate     | 28   | 15    | 5    | 48    |
| Other metamorphic source                    | 4    | 0     | 0    | 4     |
| Mixed volcanic and granitic, Rillito        | 2    | 0     | 0    | 2     |
| Mixed volcanic and granitic, indeterminate  | 22   | 0     | 0    | 22    |
| Mixed volcanic, granitic, and sedimentary   | 3    | 0     | 0    | 3     |
| Plutonic or plutonic/mixed lithic           | 0    | 8     | 5    | 13    |
| Plutonic and mixed lithic, Cienega Creek    | 0    | 0     | 0    | 0     |
| Plutonic and mixed lithic, Airport          | 11   | 0     | 0    | 11    |
| Plutonic and mixed lithic, Black Mountain   | 22   | 24    | 0    | 46    |
| Plutonic and mixed lithic, indeterminate    | 32   | 14    | 11   | 57    |
| Crushed rock                                | 3    | 0     | 0    | 3     |
| Santan/Gila Butte schist and sand           | 0    | 0     | 0    | 0     |
| Naturally schistose sand                    | 0    | 0     | 0    | 0     |
| Coarse muscovite schist                     | 2    | 1     | 0    | 3     |
| "Microgranite"                              | 0    | 6     | 0    | 6     |
| Indeterminate                               | 0    | 1,123 | 60   | 1,183 |
| Total                                       | 271  | 1,780 | 181  | 2,232 |

Table K.9. Temper generic and specific sources, by project, for plain ware sherds, the Yuma Wash site.

2011). Using point-count data from sand samples to create a known set of sand compositions for comparison, the discriminant analysis model will classify the sherd samples (input for evaluation as unweighted "unknowns"). The discriminant analysis output, especially the Mahalanobis distance from the group centroid and the posterior probability of group membership, can be used to evaluate the strength of the discriminant model classification for each sherd sample (Klecka 1980).

In some cases, the petrofacies determined by the discriminant model was different from that assigned during the petrographic analysis and/or during binocular analysis. In these cases, the final temper classification for the sherds is based on the totality of the evidence: binocular analysis and visual inspection of the sherd and its temper, petrographic analysis, point-count data, comparison of qualitative aspects of a sample to sands in the petrofacies to which it has been assigned, and the results of statistical analyses. To be characterized as belonging to a petrofacies, the sherd must have not only the same proportion of a grain type as the sands from its assigned petrofacies, but similar grain size, type, and morphology as well. The point-count data provide the quantity of grain types in the sample, and descriptive statistics can be used to help assess which sands have similar grain proportions. All of the information is employed to establish the final designation for a sample.

The discriminant model run for the Yuma Wash site sherds correctly predicted the petrofacies of 32 samples, a success rate of 30 percent. This was mostly for samples with typical sands from the Beehive, Twin Hills, Black Mountain, and Eastern Tortolita petrofacies. The low success rate is due to the use of

| Temper                                      | MAR3 | TOM1  | TOM2 | Total |
|---------------------------------------------|------|-------|------|-------|
| Volcanic, Beehive                           | 10   | 25    | 2    | 37    |
| Volcanic, Twin Hills                        | 9    | 190   | 12   | 211   |
| Volcanic, Wasson                            | 38   | 1     | 0    | 39    |
| Volcanic, indeterminate                     | 15   | 62    | 54   | 131   |
| Plutonic, Western Tortolita                 | 3    | 3     | 0    | 6     |
| Plutonic, Central Tortolita                 | 1    | 1     | 0    | 2     |
| Plutonic, Eastern Tortolita                 | 67   | 0     | 0    | 67    |
| Plutonic, Sierrita                          | 71   | 0     | 0    | 71    |
| Plutonic, Sutherland                        | 0    | 2     | 0    | 2     |
| Plutonic, indeterminate                     | 33   | 224   | 143  | 400   |
| Plutonic or metamorphic core complex        | 1    | 129   | 20   | 150   |
| Metamorphic core complex, Cañada del Oro    | 1    | 0     | 0    | 1     |
| Metamorphic core complex, Rincon            | 1    | 0     | 0    | 1     |
| Metamorphic core complex, Catalina          | 4    | 1     | 1    | 6     |
| Metamorphic core complex, Catalina Volcanic | 1    | 0     | 0    | 1     |
| Metamorphic core complex, indeterminate     | 20   | 6     | 0    | 26    |
| Other metamorphic source                    | 0    | 0     | 0    | 0     |
| Mixed volcanic and granitic, Rillito        | 13   | 0     | 0    | 13    |
| Mixed volcanic and granitic, indeterminate  | 54   | 1     | 0    | 55    |
| Mixed volcanic, granitic, and sedimentary   | 1    | 0     | 0    | 1     |
| Plutonic or plutonic/mixed lithic           | 0    | 35    | 42   | 77    |
| Plutonic and mixed lithic, Cienega Creek    | 2    | 0     | 0    | 2     |
| Plutonic and mixed lithic, Airport          | 1    | 0     | 0    | 1     |
| Plutonic and mixed lithic, Black Mountain   | 22   | 289   | 3    | 314   |
| Plutonic and mixed lithic, indeterminate    | 57   | 112   | 116  | 285   |
| Crushed rock                                | 4    | 0     | 0    | 4     |
| Santan/Gila Butte schist and sand           | 0    | 0     | 0    | 0     |
| Naturally schistose sand                    | 2    | 0     | 0    | 2     |
| Coarse muscovite schist                     | 0    | 0     | 0    | 0     |
| "Microgranite"                              | 0    | 0     | 0    | 0     |
| Indeterminate                               | 0    | 649   | 298  | 947   |
| Total                                       | 431  | 1,730 | 691  | 2,852 |

**Table K.10.** Temper generic and specific sources, by project, for Tucson Basin Red-on-brown ware sherds, the Yuma Wash site.

a local Wasson "mixed" composition sand for many of the vessels (see below). The discriminant model often predicted samples with this sand composition to the Rillito (M) Petrofacies, which would be the best match of those samples used for the model. If these are considered correct assignments, the success rate improves to 50 percent (52 of 105 samples). An additional unusual composition is one with volcanic and granitic grains that is mostly likely found in the northern Tucson Mountains. As this sand was not within the samples analyzed for the model, it is not expected the sherds containing this sand will be correctly predicted. For the two samples with high muscovite mica, the seven samples with mixed sand and muscovite, and the two samples with gneiss/ schist and muscovite the discriminant model correctly predicted the petrofacies for two samples and

was close for six samples. The addition of other components beside sand to the ceramic paste is understandably a challenge for a model based on sand composition alone. However, for the four samples with sand and grog temper, the predicted assignment was accurate for three of the samples.

The primary reason for the lack of concordance between the discriminant model and the results from the other analyses appeared during the binocular and petrographic examinations when an unusual fine sand composition was noted. The fine sand contained volcanic inclusions characteristic of the Tucson Mountains, i.e., Wasson Petrofacies; however, granite and granite-gneiss rock fragments commonly associated with the Tortolita Mountains were also seen. The latter were often large grains and sometimes appeared angular. This sand was inter-

| Temper                                      | MAR3 | TOM1 | TOM2 | Total |
|---------------------------------------------|------|------|------|-------|
| Volcanic, Beehive                           | 0    | 4    | 0    | 4     |
| Volcanic, Twin Hills                        | 0    | 4    | 0    | 4     |
| Volcanic, Wasson                            | 1    | 0    | 0    | 1     |
| Volcanic, indeterminate                     | 1    | 5    | 1    | 7     |
| Plutonic, Western Tortolita                 | 0    | 0    | 0    | 0     |
| Plutonic, Central Tortolita                 | 1    | 3    | 0    | 4     |
| Plutonic, Eastern Tortolita                 | 4    | 0    | 0    | 4     |
| Plutonic, Sierrita                          | 4    | 0    | 0    | 4     |
| Plutonic, Sutherland                        | 1    | 3    | 0    | 4     |
| Plutonic, indeterminate                     | 2    | 21   | 4    | 27    |
| Plutonic or metamorphic core complex        | 2    | 13   | 0    | 15    |
| Metamorphic core complex, Cañada del Oro    | 0    | 0    | 0    | 0     |
| Metamorphic core complex, Rincon            | 0    | 0    | 0    | 0     |
| Metamorphic core complex, Catalina          | 0    | 1    | 0    | 1     |
| Metamorphic core complex, Catalina Volcanic | 1    | 0    | 0    | 1     |
| Metamorphic core complex, indeterminate     | 4    | 1    | 0    | 5     |
| Other metamorphic source                    | 1    | 0    | 0    | 1     |
| Mixed volcanic and granitic, Rillito        | 0    | 0    | 0    | 0     |
| Mixed volcanic and granitic, indeterminate  | 2    | 0    | 0    | 2     |
| Mixed volcanic, granitic, and sedimentary   | 0    | 0    | 0    | 0     |
| Plutonic or plutonic/mixed lithic           | 0    | 0    | 0    | 0     |
| Plutonic and mixed lithic, Cienega Creek    | 0    | 0    | 0    | 0     |
| Plutonic and mixed lithic, Airport          | 0    | 0    | 0    | 0     |
| Plutonic and mixed lithic, Black Mountain   | 0    | 0    | 0    | 0     |
| Plutonic and mixed lithic, indeterminate    | 3    | 0    | 0    | 3     |
| Crushed rock                                | 3    | 0    | 0    | 3     |
| Santan/Gila Butte schist and sand           | 0    | 0    | 0    | 0     |
| Naturally schistose sand                    | 3    | 0    | 0    | 3     |
| Coarse muscovite schist                     | 0    | 2    | 0    | 2     |
| "Microgranite"                              | 0    | 1    | 0    | 1     |
| Indeterminate                               | 0    | 72   | 11   | 83    |
| Total                                       | 33   | 130  | 16   | 179   |

Table K.11. Temper generic and specific sources, by project, for red ware sherds, the Yuma Wash site.

preted as a local Wasson Petrofacies "mixed" composition sand. Its use in the ceramics would have made it difficult for the discriminant model to assign a petrofacies because it was developed based on unmixed sands from discrete washes. The sand from the Rillito Petrofacies is the most similar of those within the model. Nevertheless, it was necessary to reexamine all of the thin sections in light of the discriminant model results to establish those samples with this "mixed" composition and those with "unmixed" sand that had been correctly classified during the analysis.

To illustrate the success and difficulties in the discriminant model, several specific examples will be discussed in terms of the binocular, petrographic, and discriminant model assignments. Samples TOM1-045 to TOM1-054, coded as 4/53/J2, or, "sand temper, J2 or J3, J2" during binocular analysis, were con-

firmed as containing Twin Hills Petrofacies sand through petrographic examination. The discriminant model supported this assignment, correctly classifying the samples as containing sand rich in volcanic lithic fragments. However, the sand in one sample, TOM1-045, was assigned to the Wasson Petrofacies. Reexamination of the thin section suggested it was more likely to contain sand from the Twin Hills Petrofacies, though probably deriving from the border of the two petrofacies. Similarly, TOM1-049 had a sand with characteristics of both petrofacies, but appeared more similar to that from the Wasson Petrofacies. The successful assignment of 9 of 10 samples by binocular, petrographic, and discriminant analysis to the same petrofacies shows that there were instances where the methodology worked well.

Most of the problems with the discriminant analysis arose with samples containing the local

| Temper                                      | MAR3 | TOM1 | TOM2 | Total |
|---------------------------------------------|------|------|------|-------|
| Volcanic, Beehive                           | 0    | 0    | 0    | 0     |
| Volcanic, Twin Hills                        | 0    | 10   | 0    | 10    |
| Volcanic, Wasson                            | 0    | 0    | 0    | 0     |
| Volcanic, indeterminate                     | 0    | 5    | 0    | 5     |
| Plutonic, Western Tortolita                 | 0    | 0    | 0    | 0     |
| Plutonic, Central Tortolita                 | 0    | 0    | 0    | 0     |
| Plutonic, Eastern Tortolita                 | 2    | 0    | 0    | 2     |
| Plutonic, Sierrita                          | 2    | 0    | 0    | 2     |
| Plutonic, Sutherland                        | 0    | 1    | 0    | 1     |
| Plutonic, indeterminate                     | 0    | 2    | 1    | 3     |
| Plutonic or metamorphic core complex        | 0    | 9    | 1    | 10    |
| Metamorphic core complex, Cañada del Oro    | 0    | 0    | 0    | 0     |
| Metamorphic core complex, Rincon            | 0    | 0    | 0    | 0     |
| Metamorphic core complex, Catalina          | 0    | 0    | 0    | 0     |
| Metamorphic core complex, Catalina Volcanic | 0    | 0    | 0    | 0     |
| Metamorphic core complex, indeterminate     | 1    | 0    | 0    | 1     |
| Other metamorphic source                    | 0    | 0    | 0    | 0     |
| Mixed volcanic and granitic, Rillito        | 0    | 0    | 0    | 0     |
| Mixed volcanic and granitic, indeterminate  | 2    | 0    | 0    | 2     |
| Mixed volcanic, granitic, and sedimentary   | 0    | 0    | 0    | 0     |
| Plutonic or plutonic/mixed lithic           | 0    | 0    | 0    | 0     |
| Plutonic and mixed lithic, Cienega Creek    | 0    | 0    | 0    | 0     |
| Plutonic and mixed lithic, Airport          | 0    | 0    | 0    | 0     |
| Plutonic and mixed lithic, Black Mountain   | 0    | 1    | 0    | 1     |
| Plutonic and mixed lithic, indeterminate    | 0    | 2    | 0    | 2     |
| Crushed rock                                | 0    | 0    | 0    | 0     |
| Santan/Gila Butte schist and sand           | 0    | 0    | 0    | 0     |
| Naturally schistose sand                    | 0    | 0    | 0    | 0     |
| Coarse muscovite schist                     | 0    | 0    | 0    | 0     |
| "Microgranite"                              | 0    | 0    | 0    | 0     |
| Indeterminate                               | 0    | 19   | 4    | 23    |
| Total                                       | 7    | 49   | 6    | 62    |

Table K.12. Temper generic and specific sources, by project, for Salado Polychrome sherds, the Yuma Wash site.

Wasson "mixed" composition sand. To illustrate, samples MAR3-018, TOM1-021 to TOM1-031, and TOM2-032 to TOM2-036 that were coded as 4/30/-9 or 4/30/K, i.e., "sand temper, plutonic and mixed lithic sands, indeterminate or K" were found to have the "mixed" composition sand. The use of this binocular code highlights that there were lithic grains of several types in the samples. Petrographically, one sample was thought to contain Wasson Petrofacies sand, while the remainder was assigned to the Black Mountain Petrofacies (at this time the "mixed" composition sand was unknown). At the family level, when the model determines between granitic-metamorphic and volcanic-rock bearing petrofacies, seven samples were assigned to the former, while five were assigned to the latter (Figure K.3). This is due to the presence of both volcanic and granitic grains in the sand in varying proportions. For those

samples placed in the granitic-metamorphic model, and then subsequently into the granitic rich in microcline model, they were eventually predicted to either the Santa Rita (G) Petrofacies or the Black Mountain Petrofacies. However, the large distances were indicative of difficulties in placing these samples. Both the Santa Rita and Black Mountain petrofacies have granite and volcanic rock fragments, so these assignments are not unreasonable for a sand also featuring such inclusions. The samples placed into the volcanic model, and then subsequently into the volcanic only model, were ultimately predicted to the Rillito Petrofacies. The distances were quite small, indicative of the similarity of these sands to the Wasson "mixed" composition sand. This is not surprising, as the "mixed" composition sand probably derives from near the Yuma Wash site, which is located next to the bound-

| Temper                                      | MAR3 | TOM1 | TOM2 | Total |
|---------------------------------------------|------|------|------|-------|
| Volcanic, Beehive                           | 0    | 0    | 0    | 0     |
| Volcanic, Twin Hills                        | 0    | 27   | 1    | 28    |
| Volcanic, Wasson                            | 0    | 3    | 0    | 3     |
| Volcanic, indeterminate                     | 0    | 1    | 2    | 3     |
| Plutonic, Western Tortolita                 | 0    | 0    | 0    | 0     |
| Plutonic, Central Tortolita                 | 0    | 0    | 0    | 0     |
| Plutonic, Eastern Tortolita                 | 1    | 0    | 0    | 1     |
| Plutonic, Sierrita                          | 1    | 0    | 0    | 1     |
| Plutonic, Sutherland                        | 0    | 0    | 0    | 0     |
| Plutonic, indeterminate                     | 1    | 3    | 0    | 4     |
| Plutonic or metamorphic core complex        | 0    | 11   | 1    | 12    |
| Metamorphic core complex, Cañada del Oro    | 0    | 0    | 0    | 0     |
| Metamorphic core complex, Rincon            | 0    | 0    | 0    | 0     |
| Metamorphic core complex, Catalina          | 0    | 1    | 0    | 1     |
| Metamorphic core complex, Catalina Volcanic | 0    | 0    | 0    | 0     |
| Metamorphic core complex, indeterminate     | 0    | 6    | 0    | 6     |
| Other metamorphic source                    | 0    | 0    | 0    | 0     |
| Mixed volcanic and granitic, Rillito        | 0    | 0    | 0    | 0     |
| Mixed volcanic and granitic, indeterminate  | 0    | 0    | 0    | 0     |
| Mixed volcanic, granitic, and sedimentary   | 0    | 0    | 0    | 0     |
| Plutonic or plutonic/mixed lithic           | 0    | 0    | 0    | 0     |
| Plutonic and mixed lithic, Cienega Creek    | 0    | 0    | 0    | 0     |
| Plutonic and mixed lithic, Airport          | 0    | 0    | 0    | 0     |
| Plutonic and mixed lithic, Black Mountain   | 1    | 4    | 0    | 5     |
| Plutonic and mixed lithic, indeterminate    | 0    | 2    | 0    | 2     |
| Crushed rock                                | 1    | 0    | 0    | 1     |
| Santan/Gila Butte schist and sand           | 0    | 7    | 0    | 7     |
| Naturally schistose sand                    | 0    | 0    | 0    | 0     |
| Coarse muscovite schist                     | 0    | 9    | 0    | 9     |
| "Microgranite"                              | 0    | 0    | 0    | 0     |
| Indeterminate                               | 0    | 65   | 15   | 80    |
| Total                                       | 5    | 139  | 19   | 163   |

Table K.13. Temper generic and specific sources, by project, for other ware sherds, the Yuma Wash site.

ary of the Wasson and Rillito Petrofacies. In fact, as far as the sands utilized in the model, the Rillito Petrofacies sands are the most analogous. However, during reexamination of these samples, it was clear they contained a sand from an area just to the south of the Rillito Petrofacies and within the floodplain, thus their attribution to the Wasson "mixed" composition sand.

Another unusual sand composition encountered during the analysis also contained northern Tucson Mountains volcanic inclusions along with granite grains. However, these grains were distinct in their composition and texture, and appeared similar to grains in some of the sands from the Amole (Q) and Rillito West (Mw) petrofacies. This indicated a probable source for the sand somewhere in the northern part of the Tucson Mountains. Samples with this sand were given various binocular and petrographic assignments, which is expected for a composition that was unknown at the time of these analyses. The discriminant model predicted the samples to a number of Tucson Mountains petrofacies, with the specific assignment based on whether the sand was dominated by volcanic or granitic rock fragments. These disparities prompted a second examination of the thin sections in which this unusual sand was identified. As there is no comparable sand in the database used for the model, the difficulties encountered by the discriminant model are expected.

Finally, four samples appeared similar to sand from the Eastern Tortolita Petrofacies but contained more volcanic grains than is typical for this petrofacies. During the binocular analysis, they were coded as 4/2/-9 or 4/-9/-9, i.e., "sand temper, plutonic

| Sample          | Ware                                                   | Temper Type                      | Temper Generic Source <sup>a</sup> | Temper Specific<br>Source <sup>a</sup> | Petrofacies <sup>a</sup> |
|-----------------|--------------------------------------------------------|----------------------------------|------------------------------------|----------------------------------------|--------------------------|
| MAR3-001        | Tanque Verde Red-on-brown                              | Sand                             | J2 or J3                           | Indeterminate                          | J3                       |
| MAR3-002        | Plain ware                                             | Sand                             | J2 or J3                           | J2                                     | ]2                       |
| MAR3-003        | Late Rincon or Tanque Verde red-on-brown               | Sand and grog                    | J3 or M                            | Indeterminate                          | М                        |
| MAR3-004        | Plain ware                                             | Sand and grog                    | J3 or M                            | J3                                     | J3                       |
| MAR3-005        | Middle or Late Rincon or Tanque Verde red-<br>on-brown | Sand                             | J3 or M                            | J3                                     | J3                       |
| MAR3-006        | Plain ware                                             | Sand                             | Plutonic                           | Indeterminate                          | 12                       |
| MAR3-007        | Indeterminate red-on-brown                             | Sand                             | Plutonic                           | Indeterminate                          | J2                       |
| <b>MAR3-008</b> | Tanque Verde Red-on-brown                              | Sand                             | Plutonic                           | 0                                      | J3                       |
| MAR3-009        | Indeterminate Mogollon Corrugated                      | Sand                             | Plutonic                           | 0                                      | Unknown                  |
| MAR3-010        | Plain ware                                             | Mixed sand and muscovite mica    | Plutonic                           | 0                                      | J3                       |
| MAR3-011        | Tanque Verde Red-on-brown                              | Sand                             | Plutonic                           | 0                                      | J2                       |
| MAR3-012        | Plain ware                                             | Sand                             | E1 or E3                           | E3                                     | E1                       |
| MAR3-013        | Tanque Verde Red-on-brown                              | Sand                             | E1 or E3                           | E3                                     | Unknown                  |
| MAR3-014        | Tanque Verde Red-on-brown                              | Sand                             | E1 or E3                           | E3                                     | Μ                        |
| MAR3-015        | Tanque Verde Red-on-brown                              | Sand                             | E1 or E3                           | E3                                     | Unknown                  |
| MAR3-016        | Tanque Verde Red-on-brown                              | Sand                             | Mixed volcanic and granitic        | Indeterminate                          | J2                       |
| MAR3-017        | Late Rincon or Tanque Verde red-on-brown               | Sand                             | Mixed volcanic and granitic        | Indeterminate                          | J3                       |
| MAR3-018        | Tanque Verde Red-on-brown                              | Sand                             | Plutonic and mixed lithic          | Indeterminate                          | ]3                       |
| MAR3-019        | Late Rincon or Tanque Verde red-on-brown               | Sand                             | Plutonic and mixed lithic          | Indeterminate                          | К                        |
| MAR3-020        | Tanque Verde Red-on-brown                              | Sand                             | Plutonic and mixed lithic          | Indeterminate                          | ]3                       |
| MAR3-021        | Tanque Verde Red-on-brown                              | Sand                             | Plutonic and mixed lithic          | K                                      | Bv                       |
| MAR3-022        | Plain ware                                             | Mixed sand and muscovite mica    | Metamorphic core complex           | Indeterminate                          | ]3                       |
| MAR3-023        | Plain ware                                             | Mixed sand and muscovite mica    | Metamorphic core complex           | Indeterminate                          | E3                       |
| MAR3-024        | Plain ware                                             | Gneiss/schist and muscovite mica | Crushed rock                       | Indeterminate                          | K                        |
| MAR3-025        | Plain ware                                             | Gneiss/schist and muscovite mica | Crushed rock                       | Indeterminate                          | Unknown                  |
| TOM1-003        | Plain ware                                             | High muscovite mica              | Indeterminate                      | Indeterminate                          | J2                       |
| TOM1-004        | Tanque Verde Red-on-brown                              | Sand                             | Indeterminate                      | Indeterminate                          | J2                       |
| TOM1-005        | Tanque Verde Red-on-brown                              | Sand                             | Indeterminate                      | Indeterminate                          | Unknown                  |
| TOM1-007        | Tanque Verde Red-on-brown                              | Sand                             | Indeterminate                      | Indeterminate                          | E3                       |
| TOM1-008        | Plain ware                                             | High muscovite mica              | Indeterminate                      | Indeterminate                          | Unknown                  |
| TOM1-014        | Stucco Plain ware                                      | Sand                             | Volcanic                           | Indeterminate                          | J2                       |
| TOM1-016        | Middle or Late Rincon or Tanque Verde red-             | Sand                             | Volcanic                           | J2                                     | J2                       |
|                 | on-brown                                               |                                  |                                    |                                        |                          |

Table K.14. Sample inventory and results of petrographic analysis, the Yuma Wash site.

| Table K.14. | Table K.14. Continued.                              |             |             |
|-------------|-----------------------------------------------------|-------------|-------------|
| Sample Ware | Ware                                                | Temper Type | Temper Ge   |
| TOM1-017    | TOM1-017 Tanque Verde Red-on-brown                  | Sand        | Plutonic    |
| TOM1-018    | TOM1-018 Plain ware                                 | Sand        | Plutonic    |
| TOM1-019    | TOM1-019 Tanque Verde Red-on-brown                  | Sand        | Metamorph   |
| TOM1-020    | TOM1-020 Middle or Late Rincon or Tanque Verde red- | Sand        | Metamorph   |
|             | on-brown                                            |             | ĸ           |
| TOM1-021    | TOM1-021 Tanque Verde Red-on-brown                  | Sand        | Plutonic an |
| TOM1-022    | TOM1-022 Late Rincon or Tanque Verde red-on-brown   | Sand        | Plutonic an |
| TOM1-023    | TOM1-023 Tanque Verde Red-on-brown                  | Sand        | Plutonic an |
| TOM1-024    | TOM1-024 Tanque Verde Red-on-brown                  | Sand        | Plutonic an |
| TOM1-025    | TOM1-025 Tanque Verde Red-on-brown                  | Sand        | Plutonic an |

| Sample   | Ware                                       | Temper Type                   | Temper Generic Source <sup>a</sup>    | Temper Specific<br>Source <sup>a</sup> |
|----------|--------------------------------------------|-------------------------------|---------------------------------------|----------------------------------------|
| TOM1-017 | Tanque Verde Red-on-brown                  | Sand                          | Plutonic                              | Indeterminate                          |
| TOM1-018 | Plain ware                                 | Sand                          | Plutonic                              | Indeterminate                          |
| TOM1-019 | Tanque Verde Red-on-brown                  | Sand                          | Metamorphic core complex              | Indeterminate                          |
| TOM1-020 | Middle or Late Rincon or Tanque Verde red- | Sand                          | Metamorphic core complex              | В                                      |
|          |                                            |                               |                                       |                                        |
| TOM1-021 | Tanque Verde Red-on-brown                  | Sand                          | Plutonic and mixed lithic             | Indeterminate                          |
| TOM1-022 | Late Rincon or Tanque Verde red-on-brown   | Sand                          | Plutonic and mixed lithic             | Indeterminate                          |
| TOM1-023 | Tanque Verde Red-on-brown                  | Sand                          | Plutonic and mixed lithic             | Indeterminate                          |
| TOM1-024 | Tanque Verde Red-on-brown                  | Sand                          | Plutonic and mixed lithic             | K                                      |
| TOM1-025 | Tanque Verde Red-on-brown                  | Sand                          | Plutonic and mixed lithic             | K                                      |
| TOM1-026 | Tanque Verde Red-on-brown                  | Sand                          | Plutonic and mixed lithic             | K                                      |
| TOM1-027 | Tanque Verde Red-on-brown                  | Sand                          | Plutonic and mixed lithic             | K                                      |
| TOM1-028 | Tanque Verde Red-on-brown                  | Sand                          | Plutonic and mixed lithic             | K                                      |
| TOM1-029 | Tanque Verde Red-on-brown                  | Sand                          | Plutonic and mixed lithic             | K                                      |
| TOM1-030 | Tanque Verde Red-on-brown                  | Sand                          | Plutonic and mixed lithic             | K                                      |
| TOM1-031 | Tanque Verde Red-on-brown                  | Sand                          | Plutonic and mixed lithic             | K                                      |
| TOM1-032 | Late Rincon or Tanque Verde red-on-brown   | Sand                          | Plutonic and mixed lithic             | K                                      |
| TOM1-034 | Plain ware                                 | Sand                          | Plutonic or metamorphic core complex  | Indeterminate                          |
| TOM1-036 | Plain ware                                 | Sand                          | Plutonic or metamorphic core complex  | Indeterminate                          |
| TOM1-038 | Late Rincon or Tanque Verde red-on-brown   | Sand                          | Plutonic or metamorphic core complex  | Indeterminate                          |
| TOM1-040 | Tortolita Red                              | Sand                          | E1 or E2                              | E2                                     |
| TOM1-041 | Tanque Verde Red-on-brown                  | Sand                          | Plutonic or plutonic and mixed lithic | Indeterminate                          |
| TOM1-042 | Tanque Verde Red-on-brown                  | Sand                          | Plutonic or plutonic and mixed lithic | Indeterminate                          |
| TOM1-043 | Indeterminate Polychrome                   | Sand                          | Plutonic or metamorphic core complex  | S                                      |
| TOM1-044 | Plain ware                                 | Sand                          | E2 or S                               | E2                                     |
| TOM1-045 | Tanque Verde Red-on-brown                  | Sand                          | J2 or]3                               | J2                                     |
| TOM1-046 | Tanque Verde Red-on-brown                  | Sand                          | J2 or J3                              | J2                                     |
| TOM1-047 | Plain ware                                 | Sand                          | J2 or J3                              | J2                                     |
| TOM1-048 | Plain ware                                 | Mixed sand and muscovite mica | J2 or J3                              | J2                                     |
| TOM1-049 | Plain ware                                 | Sand                          | J2 or J3                              | J2                                     |
| TOM1-050 | Tanque Verde Red-on-brown                  | Sand                          | J2 or J3                              | J2                                     |
| TOM1-051 | Plain ware                                 | Sand                          | J2 or J3                              | J2                                     |
| TOM1-052 | Middle or Late Rincon or Tanque Verde red- | Sand                          | J2 or J3                              | J2                                     |
|          | on-brown                                   |                               |                                       |                                        |

Petrofacies<sup>a</sup>

ы в В В

| Sample Ware                                         | Temper Type                   | Temper Generic Source <sup>a</sup>   | Temper Specific<br>Source <sup>a</sup> | Petrofacies <sup>a</sup> |
|-----------------------------------------------------|-------------------------------|--------------------------------------|----------------------------------------|--------------------------|
| TOM1-053 Flattened Brown Corrugated                 | Sand                          | J2 or J3                             | J2                                     | J2                       |
| TOM1-054 Clapboard Brown Corrugated                 | Sand                          | J2 or J3                             | J2                                     | J2                       |
| TOM2-001 Gila Polychrome                            | Sand                          | Indeterminate                        | Indeterminate                          | J2                       |
| TOM2-002 Indeterminate Classic red                  | Mixed sand and muscovite mica | Indeterminate                        | Indeterminate                          | J2                       |
| TOM2-003 Middle or Late Rincon or Tanque Verde red- | Sand                          | Indeterminate                        | Indeterminate                          | K                        |
| TOM2-004 Tanque Verde Red-on-brown                  | Sand                          | Indeterminate                        | Indeterminate                          | E1                       |
|                                                     | Sand                          | Indeterminate                        | Indeterminate                          | X                        |
| TOM2-006 Tanque Verde Red-on-brown                  | Sand                          | Indeterminate                        | Indeterminate                          | E1                       |
| TOM2-007 Tanque Verde Red-on-brown                  | Sand                          | Indeterminate                        | Indeterminate                          | К                        |
| TOM2-008 Tanque Verde Red-on-brown                  | Sand                          | Indeterminate                        | Indeterminate                          | J2                       |
| TOM2-009 Tanque Verde Red-on-brown                  | Sand                          | Indeterminate                        | Indeterminate                          | J2                       |
| TOM2-010 Tanque Verde Red-on-brown                  | Sand                          | Indeterminate                        | Indeterminate                          | K                        |
| TOM2-011 Tanque Verde Red-on-brown                  | Sand                          | Indeterminate                        | Indeterminate                          | J2                       |
| TOM2-012 Tanque Verde Red-on-brown                  | Sand                          | Indeterminate                        | Indeterminate                          | K                        |
| TOM2-013 Tanque Verde Red-on-brown                  | Sand                          | Indeterminate                        | Indeterminate                          | K                        |
| TOM2-014 Tanque Verde Red-on-brown                  | Sand                          | Indeterminate                        | Indeterminate                          | K                        |
| TOM2-015 Plain ware                                 | Mixed sand and muscovite mica | Plutonic or metamorphic core complex | Indeterminate                          | К                        |
| TOM2-017 Plain ware                                 | Sand                          | Indeterminate                        | Indeterminate                          | К                        |
| TOM2-019 Tanque Verde Red-on-brown                  | Sand                          | Volcanic                             | J1                                     | K                        |
| TOM2-020 Tanque Verde Red-on-brown                  | Sand                          | Volcanic                             | Indeterminate                          | J2                       |
| TOM2-021 Plain ware                                 | Sand                          | Volcanic                             | Indeterminate                          | J2                       |
| TOM2-022 Tanque Verde Red-on-brown                  | Sand                          | Volcanic                             | J2                                     | J2                       |
| TOM2-023 Plain ware                                 | Sand                          | Plutonic                             | Indeterminate                          | K                        |
| TOM2-025 Tanque Verde Red-on-brown                  | Sand                          | Plutonic                             | Indeterminate                          | E1                       |
| TOM2-026 Tanque Verde Red-on-brown                  | Sand                          | Plutonic                             | Indeterminate                          | К                        |
| TOM2-027 Tanque Verde Red-on-brown                  | Sand                          | Plutonic                             | Indeterminate                          | K                        |
| TOM2-028 Tanque Verde Red-on-brown                  | Sand                          | Plutonic                             | Indeterminate                          | <b>J</b> 2               |
| TOM2-029 Tanque Verde Red-on-brown                  | Sand                          | Plutonic                             | Indeterminate                          | K                        |
| TOM2-030 Tanque Verde Red-on-brown                  | Sand                          | Plutonic                             | Indeterminate                          | K                        |
| TOM2-031 Indeterminate Redware                      | Sand                          | Plutonic                             | Indeterminate                          | К                        |
| TOM2-032 Tanque Verde Red-on-brown                  | Sand                          | Plutonic and mixed lithic            | Indeterminate                          | У                        |
| TOM2-033 Tanque Verde Red-on-brown                  | Sand                          | Plutonic and mixed lithic            | Indeterminate                          | К                        |

Table K.14. Continued.

| Sample Ware       | Ware                                                                                                                                                                                        | Temper Type                            | Temper Generic Source <sup>a</sup>                 | Temper Specific<br>Source <sup>a</sup> | Petrofacies <sup>a</sup> |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------|--------------------------|
| TOM2-034          | ToM2-034 Tanque Verde Red-on-brown                                                                                                                                                          | Sand                                   | Plutonic and mixed lithic                          | Indeterminate                          | К                        |
| TOM2-035          | TOM2-035 Tanque Verde Red-on-brown                                                                                                                                                          | Sand                                   | Plutonic and mixed lithic                          | Indeterminate                          | K                        |
| TOM2-036          | TOM2-036 Tanque Verde Red-on-brown                                                                                                                                                          | Sand                                   | Plutonic and mixed lithic                          | Indeterminate                          | K                        |
| TOM2-037          | TOM2-037 Tanque Verde Red-on-brown                                                                                                                                                          | Sand                                   | Plutonic or metamorphic core complex Indeterminate | Indeterminate                          | J2                       |
| TOM2-038          | TOM2-038 Plain ware                                                                                                                                                                         | Mixed sand and muscovite mica          | Plutonic or metamorphic core complex Indeterminate | Indeterminate                          | Unknown                  |
| TOM2-039          | TOM2-039 Tanque Verde Red-on-brown                                                                                                                                                          | Sand                                   | Plutonic or plutonic and mixed lithic              | Indeterminate                          | K                        |
| TOM2-040          | TOM2-040 Tanque Verde Red-on-brown                                                                                                                                                          | Sand                                   | Plutonic or plutonic and mixed lithic              | Indeterminate                          | J2                       |
| TOM2-041          | TOM2-041 Plain ware                                                                                                                                                                         | Sand and grog                          | Plutonic                                           | Indeterminate                          | J2                       |
| TOM2-042          | rom2-042 Tanque Verde Red-on-brown                                                                                                                                                          | Sand and grog                          | Indeterminate                                      | Indeterminate                          | J2                       |
| $^{a}B = Catalii$ | <sup>a</sup> B = Catalina Petrofacies, Bv = Catalina Volcanic Petrofacies, E1 = Western Tortolita Petrofacies, E2 = Central Tortolita Petrofacies, E3 = Eastern Tortolita Petrofacies, J1 = | ies, E1 = Western Tortolita Petrofacio | es, E2 = Central Tortolita Petrofacies, E3 =       | = Eastern Tortolita                    | Petrofacies, J1 =        |
| Beehive Pe        | Beehive Petrofacies, J2 = Twin Hills Petrofacies, J3 = Wasson Petrofacies, K = Black Mountain Petrofacies, M = Rillito Petrofacies, O = Sierrita Petrofacies, S = Sutherland                | sson Petrofacies, K = Black Mountair   | η Petrofacies, M = Rillito Petrofacies, O =        | Sierrita Petrofacies,                  | S = Sutherland           |

Petrofacies.

Table K.14. Continued.

| Parameter        | Description                                                                                                                                                                                                                         |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monomineralic Gi | ains                                                                                                                                                                                                                                |
| Qtz              | All sand-sized quartz grains, except those derived from or contained within coarse-foliated rocks; unstained                                                                                                                        |
| Kspar            | Alkali feldspars, except those derived from or contained within coarse-foliated rocks; potassium feldspar stained yellow, unstained plagioclase feldspar, perthite, antiperthite                                                    |
| Micr             | Microcline/anorthoclase: alkali feldspar with polysynthetic (cross-hatch) twinning; stained yellow or unstained                                                                                                                     |
| Plag             | Plagioclase feldspar, stained pink, except grains derived from or contained within coarse-foliated rocks; grains commonly have albite and/or carlsbad twinning. Alteration, sericitization affect less than 10 percent of the grain |
| Plagal           | Altered plagioclase, except grains derived from or contained within coarse-foliated rocks; alteration affects 10 to 90 percent of the grain; alteration products include sericite, clay minerals, carbonate, epidote                |
| Plaggn           | Considerably altered plagioclase, except grains derived from or contained within coarse-foliated rocks; alteration affects more than 90 percent of the grain                                                                        |
| Px               | Undifferentiated members of the pyroxene group                                                                                                                                                                                      |
| Amph             | Undifferentiated members of the amphibole group                                                                                                                                                                                     |
| Opaq             | Undifferentiated opaque minerals, such as magnetite/ilmenite, rutile, and iron oxides                                                                                                                                               |
| Biot             | Biotite mica                                                                                                                                                                                                                        |
| Musc             | Muscovite mica                                                                                                                                                                                                                      |
| Chlor            | Chlorite group minerals                                                                                                                                                                                                             |
| Oliv             | Undifferentiated members of the olivine group                                                                                                                                                                                       |
| Epid             | Undifferentiated members of the epidote family (epidote, zoisite, clinozoisite)                                                                                                                                                     |
| Sphene           | Sphene                                                                                                                                                                                                                              |
| Gar              | Undifferentiated members of the garnet group                                                                                                                                                                                        |
| Caco             | Calcium carbonate minerals                                                                                                                                                                                                          |
| Metamorphic Lith | ic Fragments                                                                                                                                                                                                                        |
| Lmm              | Microgranular quartz aggregate: non-oriented polygonal aggregates of newly grown strain-free quartz with sutured, planar, or curved grain boundaries                                                                                |
| τ                | Enlisted guarte accurate alarger oriented fabric developed in mostly strained guarte agestals                                                                                                                                       |

Table K.15. Point-count parameters used in the petrographic analysis of the data set, the Yuma Wash site.

- Lmf Foliated quartz aggregate: planar-oriented fabric developed in mostly strained quartz crystals with sutured crystallite boundaries; quartzite
- Lma Quartz-feldspar (mica) aggregate: quartz, feldspars, mica, and opaque oxides in aggregates with highly sutured grain boundaries but no planar-oriented fabric; some represent schists or gneisses viewed on edge, some are metasediments or metavolcanics
- Lmt Quartz-feldspar-mica tectonite (schists or gneisses): quartz, feldspars, micas, and opaque oxides, with strong planar oriented fabric; often display mineral segregation with alternating quartz-felsic and mica ribbons; grains are often extremely sutured and/or elongated
- Lmtp Phyllite: like Lmt, but the grains are silt sized or smaller, with little or no mineral segregation; also argillaceous grains, which exhibit growth of planar-oriented micas, silt sized or smaller
- Lmvf Metamorphosed volcanic rock such as rhyolite; massive-to-foliated aggregates of quartz and feldspar grains with relict phenocrysts of feldspar
- Lmss Metamorphosed sedimentary rock, such as a meta-siltstone; massive fine-grained aggregates of quartz and feldspar, with or without relict sedimentary texture

## Volcanic Lithic Fragments

- Lvfb Biotite-bearing felsic volcanic: microgranular nonfelted mosaics of submicroscopic quartz and feldspars, often with microphenocrysts of feldspar, quartz, always with phenocrysts of biotite; groundmass is fine to glassy, always has well-developed potassium feldspar (yellow) stain
- Lvf Felsic volcanic such as rhyolite: microgranular nonfelted mosaics of submicroscopic quartz and feldspars, often with microphenocrysts of feldspar, quartz, or rarely, ferromagnesian minerals; groundmass is fine to glassy, always has well-developed potassium feldspar (yellow) stain, may also have plagioclase (pink) stain.

## Table K.15. Continued.

| Parameter          | Description                                                                                                                                        |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Lvi                | Intermediate volcanic rock such as rhyodacite, dacite, latite, and andesite                                                                        |
| Lvm                | Mafic volcanic: visible microlites or laths of feldspar crystals in random to parallel fabrics, usually                                            |
|                    | with glassy, devitrified, or otherwise altered dark groundmass; often with phenocrystals of                                                        |
|                    | opaque oxides, occasional quartz, pyroxene, or olivine; rarely yellow-stained, usually has well-                                                   |
|                    | developed pink stain, representing intermediate to basic lavas such as latite, andesite, quartz-<br>andesite, basalt, or trachyte                  |
| Lvv                | Glassy volcanics: vitrophyric grains showing relict shards, pumiceous fabric, welding or perlitic                                                  |
|                    | structure, sometimes with microphenocrysts, representing pyroclastic or glassy volcanic rocks                                                      |
| Lvh                | Hypabyssal volcanics (shallow igneous intrusive rocks): equigranular anhedral-to-subhedral                                                         |
|                    | feldspar-rich rocks, with no glassy or devitrified groundmass, coarser-grained than Lvf, most have                                                 |
|                    | yellow and pink stain                                                                                                                              |
| Sedimentary Lithic | Fragments                                                                                                                                          |
| Lss                | Siltstones: granular aggregates of equant subangular-to-rounded silt-sized grains, with or without                                                 |
|                    | interstitial cement; may be well-to-poorly sorted, with or without sand-sized grains; composition                                                  |
|                    | varies from quartzose to lithic-arkosic, with some mafic-rich varieties                                                                            |
| Lsch               | Chert: microcrystalline aggregates of pure silica                                                                                                  |
| Lsca               | Carbonate: mosaics of very fine calcite crystals, with or without interstitial clay- to sand-sized                                                 |
|                    | grains; most appear to be fragments of soil carbonate (caliche) and are subround to very round                                                     |
| Monomineralic Gr   | ains in Coarse Foliated Rocks                                                                                                                      |
| Sopaq              | Undifferentiated opaque minerals derived from or contained within coarse foliated rocks                                                            |
| Smusc              | Muscovite mica derived from or contained within coarse foliated rocks                                                                              |
| Schlor             | Undifferentiated chlorite group minerals derived from or contained within coarse foliated rocks                                                    |
| Totals and Paste P | Parameters                                                                                                                                         |
| Total              | The total number of point-counted sand-sized grains.                                                                                               |
| Total Foliated     | SQTZ + SPLAG + SMUSC + SCHLOR + SOPAQ + SKSPAR + LMA + LMT + LMTP + LMF +                                                                          |
| Rocks              | LMM                                                                                                                                                |
| Total Sand         | If temper type is "Crushed rock," or "Crushed rock + sand," then Total sand temper = Total -                                                       |
| Temper             | Total Foliated Rocks; if temper type is "Sand," then Total sand temper = Total; counts for grog and                                                |
| Paste              | clay lumps are also removed to create this total<br>The total number of points counted in the silt- to clay-sized fraction of the paste            |
| Percent Temper     | Total/(Total+Paste) x 100                                                                                                                          |
| Grog               | Sherd temper: Dark, semiopaque angular to subround grains with discrete margins, including silt                                                    |
| Glog               | to sand size temper grains in a clay, iron oxides, and/or micaceous matrix; the grains differ in                                                   |
|                    | color and/or texture from the surrounding matrix of the "host" ceramic.                                                                            |
| Clay lumps         | Discrete sand-sized grains or "lumps," of untempered clay; they comprise clay that lacks silt- to                                                  |
|                    | sand-sized grains; the grains are often similar in color to the surrounding paste, but have well-                                                  |
|                    | defined, abrupt boundaries; their internal texture is finer than the paste and has a different                                                     |
|                    | orientation; they are interpreted as clay that was insufficiently mixed with the surrounding clay body                                             |
|                    |                                                                                                                                                    |
| Unknown and Inde   |                                                                                                                                                    |
| Unkn               | Grains that cannot be identified, grains that are indeterminate, and grains such as zircon and tourmaline that occur in extremely low percentages. |
|                    | tourname that occur in extremely low percentages.                                                                                                  |

sands, indeterminate" or "sand temper, indeterminate, indeterminate." This signifies the difficulty in attributing this sand to a specific petrofacies. Petrographically, the samples were assigned to either the Black Mountain or Western Tortolita (E1) petrofacies, while the discriminant model predicted two samples to the Eastern Tortolita Petrofacies, one to adjacent Big Wash (Z) Petrofacie<sup>3</sup>, and one to the Wasson Petrofacies. This last assignment by the

<sup>&</sup>lt;sup>3</sup>This petrofacies was recently more clearly defined with acquired sand samples. The discriminant model suggested they could be separated from the adjacent Eastern Tortolita Petrofacies (Miksa et al. 2011).

Table K.16. Qualitative attribute codes applied to the samples during petrographic analysis, the Yuma Wash site.

| QUALITATIVE ATTRIBUTES OF THE LESS-THAN-SAND-SIZED FRACTION                           |                                            |          |                                                           |  |  |  |
|---------------------------------------------------------------------------------------|--------------------------------------------|----------|-----------------------------------------------------------|--|--|--|
| Matri                                                                                 | x Opacity                                  |          |                                                           |  |  |  |
| 0                                                                                     | Opaque                                     | 5        | Translucent                                               |  |  |  |
| 1                                                                                     | Almost opaque                              | 6        | More than translucent                                     |  |  |  |
| 2                                                                                     | Sort of opaque                             | 7        | Sort of transparent                                       |  |  |  |
| 3                                                                                     | Sort of translucent                        | 8        | Almost transparent                                        |  |  |  |
| 4                                                                                     | Almost translucent                         | 9        | Transparent                                               |  |  |  |
| Matri                                                                                 | Matrix Color                               |          |                                                           |  |  |  |
| 10                                                                                    | Black                                      | 25       | Reddish-brown                                             |  |  |  |
| 12                                                                                    | Brownish-gray                              | 30       | Red                                                       |  |  |  |
| 15                                                                                    | Brownish-black                             | 40       | Orange                                                    |  |  |  |
| 19                                                                                    | Dark brown                                 | 41       | Brownish-orange                                           |  |  |  |
| 20                                                                                    | Brown                                      | 42       | Yellowish-orange                                          |  |  |  |
| 21                                                                                    | Yellowish-brown                            | 50       | Yellow                                                    |  |  |  |
| 22                                                                                    | Light brown                                | -9       | Indeterminate (i.e., too much stain)                      |  |  |  |
| 23                                                                                    | Orangish-brown                             |          |                                                           |  |  |  |
| Matri                                                                                 | x Heterogeneity                            |          |                                                           |  |  |  |
| 0                                                                                     | None                                       | 4        | Zoned margin to core                                      |  |  |  |
| 1                                                                                     | Few clay lumps in the paste                | 5        | Mottled                                                   |  |  |  |
| 2                                                                                     | Several clay lumps                         | 6        | Zoned and mottled                                         |  |  |  |
| 3                                                                                     | Many clay lumps                            | 7        | Zoned, mottled, lumpy, and otherwise highly heterogeneous |  |  |  |
| <b>Composition Information</b> (composition codes are given at the end of this table) |                                            |          |                                                           |  |  |  |
| Silt Dominant: composition of the most abundant grain type in the silt fraction       |                                            |          |                                                           |  |  |  |
| Silt Se                                                                               | econdary: composition of the second most a | bundan   | It grain type in the silt fraction                        |  |  |  |
| Clay I                                                                                | Dominant: composition of the most abunda   | nt grair | n type in the clay fraction                               |  |  |  |
| Clay S                                                                                | Secondary: composition of the second most  | abunda   | ant grain type in the clay fraction                       |  |  |  |
|                                                                                       |                                            |          |                                                           |  |  |  |

## QUALITATIVE ATTRIBUTES OF THE LESS-THAN-SAND-SIZED FRACTION

QUALITATIVE ATTRIBUTES OF THE SAND-SIZED FRACTION

## **Temper Type**

| 1     | Sand                               | 6   | Self-tempered clay               |
|-------|------------------------------------|-----|----------------------------------|
| 2     | Sand plus grog                     | 7.0 | Sand + > 25 percent crushed rock |
| 3     | Grog                               | 7.1 | Sand + 7-25 percent crushed rock |
| 4     | Sand and disaggregated rock        | 7.2 | Sand + 1-7 percent crushed rock  |
| 5     | Disaggregated rock                 | 8   | Crushed rock                     |
| 5.1   | High muscovite mica (> 25 percent) | -9  | Indeterminate                    |
| Crain | n aina na daa                      |     |                                  |

## Grain size codes

Modal Schist Size: size mode of the schist or gneiss temper component

Modal Sand Size: size mode of the sand temper component

Finest: size of the finest temper grain

Coarsest: size of the coarsest temper grain

Mode: overall size mode of the temper

#### The codes are as follows: 0 does not exist 5 coarse sand (0.5-1.0 mm) 1 silt (< 0.0625 mm) 6 very coarse sand (1.0-2.0 mm) 7 2 very fine sand (0.0625-0.125 mm) granule (> 2.0 mm) 3 9 bimodal fine sand (0.125-0.250 mm) 4 medium sand (0.250-0.5 mm) Sorting (of the overall temper) 1 well sorted 4 moderately-poorly sorted 2 moderately-well sorted 5 poorly sorted 3 moderately sorted 9 bimodally sorted

### Table K.16. Continued

| <u> </u> | · · · · 1                                                                                                                                             |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | omposition codes                                                                                                                                      |
| U        | ose identified in the analysis are reported here                                                                                                      |
|          | nt: dominant grain in the sand-sized fraction of the temper                                                                                           |
|          | ary: second most abundant grain type in the sand-sized fraction of the temper                                                                         |
| -        | : third most abundant grain type in the sand-sized fraction of the temper                                                                             |
|          | es are as follows:                                                                                                                                    |
| 1        | Quartz, monocrystalline                                                                                                                               |
| 5        | Quartz, undifferentiated                                                                                                                              |
| 9        | Quartz and/or feldspars                                                                                                                               |
| 10       | Feldspars, undifferentiated                                                                                                                           |
| 11       | Potassium feldspar                                                                                                                                    |
| 19       | Microcline from granitic rock                                                                                                                         |
| 20       | Plagioclase feldspar, undifferentiated                                                                                                                |
| 21       | Altered plagioclase feldspar                                                                                                                          |
| 30       | Opaque oxides, undifferentiated                                                                                                                       |
| 40       | Micas, undifferentiated                                                                                                                               |
| 41       | Muscovite                                                                                                                                             |
| 43       | Chlorite                                                                                                                                              |
| 45       | Biotite and chlorite                                                                                                                                  |
| 50       | Pyribole, undifferentiated pyroxene and amphibole                                                                                                     |
| 51       | Amphibole, probably hornblende                                                                                                                        |
| 53       | Pyroxene group minerals                                                                                                                               |
| 54       | Amphibole group minerals, may be altered                                                                                                              |
| 100      | Felsic volcanics, undifferentiated                                                                                                                    |
| 101      | Rhyolite                                                                                                                                              |
| 101.01   | Tuff of Beehive Peak, Tucson Mountains                                                                                                                |
| 101.02   | Felsic volcanic with a glassy, Ca-stained pink color; glassy, moderately vacuolar matrix and plagioclase as well as K-feldspar (sanidine) phenocrysts |
| 105      | Dacite: Plagioclase rich volcanic with strong lath structure, lathwork to glassy or devitrified banded groundmass                                     |
| 108      | Tuff (felsic to mafic, vitreous), undifferentiated                                                                                                    |
| 115.05   | Intermediate related series of volcanic rocks – "St. Mary's dirty snowballs" and related rocks of intergranular texture                               |
| 119      | Undifferentiated related suite of felsic to mafic volcanics                                                                                           |

model indicates the high proportion of volcanic grains in the sand. When these samples were reexamined, it was clear the granite and granite-gneiss grains were similar to those from the Tortolita Mountains. However, the origin of this sand remains unclear due to the abundance of volcanic grains that are not typical for any of the comparative sands from the Tortolita petrofacies.

## RESULTS

As previously stated, the final assignments for the samples were based on the totality of evidence from the binocular, petrographic, and statistical data. When these results are compared to the vessel ware, some interesting correlations were noted. For example, the plain ware samples, predominantly jars, were mostly tempered with sand from the Tucson Mountains (Twin Hills or Wasson petrofacies, including the local Wasson "mixed" composition) (Table K.19). Crushed schist was another temper component. Less frequently used for plain ware temper were sands from the Tortolita petrofacies, including sand from the Big Wash Petrofacies. The single Stucco Plain ware jar sample had Twin Hills Petrofacies sand, indicating its production just south of the Yuma Wash site.

Of the 59 samples of Tanque Verde Red-on-brown ware, 27 samples had the local "mixed" composition sand and one had unmixed Wasson Petrofacies sand. Sand from the Twin Hills Petrofacies and of the northern Tucson Mountains composition were the next most common tempering materials, with eight **Table K.17.** Point-count data for the analyzed samples, the Yuma Wash site. (Parameter definitions are given in Table K.15.)

| A. Inventory | data, tota | ls, and ot | her inc | lusions. |
|--------------|------------|------------|---------|----------|
|--------------|------------|------------|---------|----------|

|          |     |     |                  |                          |       | Total<br>Foliated  | Total<br>Sand |       | Percent |      | Clay  |      |
|----------|-----|-----|------------------|--------------------------|-------|--------------------|---------------|-------|---------|------|-------|------|
| Sample   | TT  | TSG | TSS <sup>a</sup> | Petrofacies <sup>a</sup> | Total | Rocks <sup>b</sup> | Temper        | Paste | Temper  | Grog | Lumps | Unkn |
| MAR3-001 | 4   | 53  | -9               | J3                       | 215   | 0                  | 214           | 415   | 34.13   | 1    | 0     | 0    |
| MAR3-002 | 4   | 53  | J2               | J2                       | 434   | 2                  | 432           | 228   | 65.56   | 0    | 2     | 0    |
| MAR3-003 | 9.1 | 54  | -9               | М                        | 180   | 0                  | 175           | 288   | 38.46   | 5    | 0     | 0    |
| MAR3-004 | 9.1 | 54  | J3               | J3                       | 153   | 0                  | 153           | 223   | 40.69   | 0    | 0     | 0    |
| MAR3-005 | 4   | 54  | J3               | J3                       | 378   | 3                  | 377           | 562   | 40.21   | 1    | 0     | 0    |
| MAR3-006 | 4   | 2   | -9               | J2                       | 376   | 4                  | 369           | 478   | 44.03   | 6    | 1     | 0    |
| MAR3-007 | 4   | 2   | -9               | J2                       | 506   | 2                  | 506           | 345   | 59.46   | 0    | 0     | 0    |
| MAR3-008 | 4   | 2   | 0                | J3                       | 455   | 5                  | 455           | 375   | 54.82   | 0    | 0     | 0    |
| MAR3-009 | 4   | 2   | 0                | Unknown                  | 378   | 6                  | 377           | 540   | 41.18   | 1    | 0     | 1    |
| MAR3-010 | 6   | 2   | 0                | J3                       | 392   | 5                  | 390           | 385   | 50.45   | 1    | 1     | 0    |
| MAR3-011 | 4   | 2   | 0                | J2                       | 406   | 2                  | 406           | 410   | 49.75   | 0    | 0     | 0    |
| MAR3-012 | 4   | 42  | E3               | E1                       | 253   | 1                  | 253           | 428   | 37.15   | 0    | 0     | 0    |
| MAR3-013 | 4   | 42  | E3               | Unknown                  | 319   | 1                  | 318           | 531   | 37.53   | 0    | 1     | 0    |
| MAR3-014 | 4   | 42  | E3               | М                        | 456   | 3                  | 453           | 541   | 45.74   | 0    | 3     | 0    |
| MAR3-015 | 4   | 42  | E3               | Unknown                  | 414   | 15                 | 414           | 358   | 53.63   | 0    | 0     | 0    |
| MAR3-016 | 4   | 7   | -9               | J2                       | 356   | 2                  | 355           | 422   | 45.76   | 0    | 1     | 1    |
| MAR3-017 | 4   | 7   | -9               | J3                       | 319   | 2                  | 317           | 498   | 39.05   | 1    | 1     | 0    |
| MAR3-018 | 4   | 30  | -9               | J3                       | 353   | 17                 | 352           | 320   | 52.45   | 0    | 1     | 0    |
| MAR3-019 | 4   | 30  | -9               | К                        | 291   | 4                  | 291           | 354   | 45.12   | 0    | 0     | 0    |
| MAR3-020 | 4   | 30  | -9               | J3                       | 254   | 4                  | 254           | 461   | 35.52   | 0    | 0     | 0    |
| MAR3-021 | 4   | 30  | Κ                | Bv                       | 262   | 2                  | 262           | 475   | 35.55   | 0    | 0     | 0    |
| MAR3-022 | 6   | 3   | -9               | J3                       | 275   | 3                  | 240           | 439   | 38.52   | 35   | 0     | 0    |
| MAR3-023 | 6   | 3   | -9               | E3                       | 227   | 3                  | 227           | 386   | 37.03   | 0    | 0     | 0    |
| MAR3-024 | 7   | 5   | -9               | К                        | 380   | 5                  | 374           | 358   | 51.49   | 0    | 1     | 0    |
| MAR3-025 | 7   | 5   | -9               | Unknown                  | 291   | 14                 | 277           | 382   | 43.24   | 0    | 0     | 0    |
| TOM1-003 | 5   | -9  | -9               | J2                       | 329   | 3                  | 326           | 725   | 31.21   | 0    | 0     | 0    |
| TOM1-004 | 4   | -9  | -9               | J2                       | 543   | 0                  | 542           | 484   | 52.87   | 0    | 1     | 0    |
| TOM1-005 | 4   | -9  | -9               | Unknown                  | 321   | 5                  | 321           | 535   | 37.50   | 0    | 0     | 1    |
| TOM1-007 | 4   | -9  | -9               | E3                       | 309   | 0                  | 308           | 533   | 36.70   | 1    | 0     | 0    |
| TOM1-008 | 5   | -9  | -9               | Unknown                  | 249   | 8                  | 249           | 580   | 30.04   | 0    | 0     | 0    |
| TOM1-014 | 4   | 1   | -9               | J2                       | 274   | 0                  | 274           | 589   | 31.75   | 0    | 0     | 0    |
| TOM1-016 | 4   | 1   | J2               | J2                       | 328   | 1                  | 328           | 533   | 38.10   | 0    | 0     | 0    |
| TOM1-017 | 4   | 2   | -9               | E1                       | 486   | 6                  | 486           | 580   | 45.59   | 0    | 0     | 0    |
| TOM1-018 | 4   | 2   | -9               | E1                       | 412   | 4                  | 412           | 485   | 45.93   | 0    | 0     | 0    |
| TOM1-019 | 4   | 3   | -9               | В                        | 389   | 29                 | 389           | 589   | 39.78   | 0    | 0     | 0    |
| TOM1-020 | 4   | 3   | В                | В                        | 327   | 12                 | 315           | 567   | 36.58   | 0    | 0     | 0    |
| TOM1-021 | 4   | 30  | -9               | К                        | 549   | 1                  | 549           | 533   | 50.74   | 0    | 0     | 0    |
| TOM1-022 | 4   | 30  | -9               | К                        | 527   | 1                  | 527           | 515   | 50.58   | 0    | 0     | 0    |
| TOM1-023 | 4   | 30  | -9               | К                        | 377   | 9                  | 376           | 472   | 44.41   | 1    | 0     | 0    |
| TOM1-024 | 4   | 30  | Κ                | E1                       | 485   | 2                  | 485           | 546   | 47.04   | 0    | 0     | 0    |
| TOM1-025 | 4   | 30  | Κ                | К                        | 479   | 2                  | 479           | 615   | 43.78   | 0    | 0     | 0    |
| TOM1-026 | 4   | 30  | Κ                | К                        | 444   | 0                  | 444           | 545   | 44.89   | 0    | 0     | 0    |
| TOM1-027 | 4   | 30  | Κ                | К                        | 521   | 1                  | 521           | 522   | 49.95   | 0    | 0     | 0    |
| TOM1-028 | 4   | 30  | Κ                | К                        | 475   | 0                  | 475           | 563   | 45.76   | 0    | 0     | 0    |
| TOM1-029 | 4   | 30  | Κ                | К                        | 471   | 4                  | 465           | 643   | 42.28   | 1    | 5     | 1    |
| TOM1-030 | 4   | 30  | Κ                | К                        | 468   | 4                  | 468           | 635   | 42.43   | 0    | 0     | 0    |
|          |     |     |                  |                          |       |                    |               |       |         |      |       |      |

## Table K.17a. Continued.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |     |                  |                          |       | Total                          | Total          |       |                   |      | C             |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|-----|------------------|--------------------------|-------|--------------------------------|----------------|-------|-------------------|------|---------------|------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample   | TT | TSG | TSS <sup>a</sup> | Petrofacies <sup>a</sup> | Total | Foliated<br>Rocks <sup>b</sup> | Sand<br>Temper | Paste | Percent<br>Temper | Grog | Clay<br>Lumps | Unkn |
| TOMI-03 4 40 -9 Bv 323 13 323 568 36.25 0 0   TOMI-038 4 40 -9 B1 379 6 376 605 38.52 3 0 0   TOMI-040 4 41 E2 E2 328 8 328 563 36.81 0 0 0 0   TOMI-042 4 45 -9 I2 281 5 281 745 27.39 0 0 0 0   TOMI-044 4 75 E3 367 1 366 344 40.73 0 0 0 0   TOMI-044 4 74 474 474 474 474 617 343 0 0 0 0   TOMI-047 4 53 J2 J2 247 44 474 474 474 617 4345 0 0 0   TOM1-045 4 53 J2 J2 247 4 44                                                                                                                                                                                                                                                                                          |          | 4  | 30  | Κ                | К                        | 723   | 4                              | _              | 844   | -                 |      | -             | 0    |
| TOMI-03 4 40 -9 Bv 323 13 323 568 36.25 0 0   TOMI-038 4 40 -9 B1 379 6 376 605 38.52 3 0 0   TOMI-040 4 41 E2 E2 328 8 328 563 36.81 0 0 0 0   TOMI-042 4 45 -9 I2 281 5 281 745 27.39 0 0 0 0   TOMI-044 4 75 E3 367 1 366 344 40.73 0 0 0 0   TOMI-044 4 74 474 474 474 474 617 343 0 0 0 0   TOMI-047 4 53 J2 J2 247 44 474 474 474 617 4345 0 0 0   TOM1-045 4 53 J2 J2 247 4 44                                                                                                                                                                                                                                                                                          | TOM1-032 | 4  | 30  | К                | К                        | 798   | 0                              | 798            | 917   | 46.53             | 0    | 0             | 0    |
| TOM1-036   4   40   -9   B   379   6   376   605   38.52   3   0   0     TOM1-400   4   41   E2   F2   328   8   328   563   36.81   0   0   0     TOM1-401   4   45   -9   E1   500   6   498   485   50.76   0   2   0     TOM1-404   4   40   S   E3   367   1   366   534   40.73   0   0   0   0     TOM1-444   4   7   E2   E2   467   1   467   54.7   5.73   0   0   0   0     TOM1-446   4   53   J2   J2   342   0   842   33.20   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                     |          | 4  |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM1-038 4 40 -9 E1 408 6 408 467 46.63 0 0 0   TOM1-041 4 4 52 E2 328 8 328 56.3 36.81 0 0 0 0   TOM1-041 4 45 -9 F1 500 6 498 455 30.76 0 0 0   TOM1-044 4 47 E2 E2 467 1 467 347 57.37 0 0 0 0   TOM1-044 47 F2 E2 22 467 1 467 347 57.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<                                                                                                                                                                                                                                                                                                                                        |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM1-040   4   41   E2   E2   328   8   328   563   36.81   0   0     TOM1-041   4   45   -9   E1   500   6   498   485   50.76   0   2   0     TOM1-042   4   45   -9   E2   281   367   1   366   534   40.73   0   0   0     TOM1-045   4   53   J2   J2   382   0   382   648   33.09   0   0   0     TOM1-046   4   53   J2   J2   474   4   474   617   43.45   0   0   0   0     TOM1-046   4   53   J2   J2   318   2   174   4474   617   43.45   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 </td <td></td> <td>4</td> <td></td> <td>-9</td> <td>E1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> |          | 4  |     | -9               | E1                       |       |                                |                |       |                   |      | 0             | 0    |
| TOM1-041 4 45 -9 E1 500 6 498 485 50.76 0 2 0   TOM1-042 4 45 -9 J2 281 5 281 745 27.39 0 0 0   TOM1-044 4 407 E2 E2 467 1 467 347 57.37 0 0 0   TOM1-044 4 53 J2 J2 382 0 382 648 37.09 0 0 0 0   TOM1-044 4 53 J2 J2 382 0 382 648 37.09 0 0 0 0   TOM1-049 4 53 J2 J2 3344 2 311 704 38.43 0 0 0 0   TOM1-051 4 53 J2 J2 402 402 802 33.39 0 0 0 0   TOM1-053 4 53 J2 J2 402 402 802                                                                                                                                                                                                                                                                                        |          | 4  |     |                  |                          |       |                                |                |       |                   |      | 0             |      |
| TOM1-042 4 45 -9 J2 281 5 281 745 27.39 0 0 0   TOM1-043 4 40 5 E3 367 1 366 534 40.73 0 0 0   TOM1-044 4 47 52 F2 467 14 467 347 617 33.12 0 0 0 0   TOM1-044 4 53 J2 J2 2447 447 617 33.84 1 0 0 0   TOM1-044 4 53 J2 J2 23.34 2 33.39 0 0 0 0   TOM1-051 4 53 J2 J2 428 0 428 33.39 0 0 0 0   TOM1-052 4 53 J2 J2 319 0 319 810 28.26 0 0 0 0   TOM1-054 4 53 J2 J2 318 27 0 174                                                                                                                                                                                                                                                                                            |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM1-043 4 40 S E3 367 1 366 534 40.73 0 0 0   TOM1-044 4 47 E2 E2 467 1 467 347 57.37 0 0 0 0   TOM1-046 4 53 J2 J2 420 1 420 845 33.20 0 0 0   TOM1-047 4 53 J2 J2 440 44 474 417 43.85 0 0 0   TOM1-047 4 53 J2 J2 212 316 6 384 975 28.36 22 0 0   TOM1-050 4 53 J2 J2 428 0 428 762 33.97 0 0 0 0   TOM1-051 4 53 J2 J2 319 0 319 810 28.26 0 0 0 0   TOM1-054 4 53 J2 J2 318 5                                                                                                                                                                                                                                                                                           |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM1-044 4 47 E2 E2 467 1 467 347 57.37 0 0 0   TOM1-045 4 53 J2 J2 J2 382 0 382 648 37.09 0 0 0   TOM1-047 4 53 J2 J2 J2 474 4 474 617 43.45 0 0 0   TOM1-048 6 53 J2 J2 315 1 515 825 38.43 0 0 0   TOM1-050 4 53 J2 J2 402 442 402 802 33.97 0 0 0   TOM1-051 4 53 J2 J2 310 0 319 10 23.597 0 0 0   TOM1-054 4 53 J2 J2 380 2 380 915 29.34 0 0 0   TOM1-054 4 53 J2 J2 380 29 39.0 33.53                                                                                                                                                                                                                                                                                  |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOMI-045 4 53 J2 J2 J2 J24 20 J382 648 J7.09 0 0 0   TOMI-046 4 53 J2 J2 J2 420 1 420 845 33.20 0 0 0   TOMI-048 6 53 J2 J2 J2 440 474 617 43.45 0 0 0   TOMI-049 4 53 J2 J2 J2 386 6 384 975 28.36 2 0 0 0   TOMI-051 4 53 J2 J2 402 40 402 33.39 0 0 0 0   TOM1-053 4 53 J2 J2 319 0 319 810 28.26 0 0 0   TOM1-054 4 53 J2 J2 317 0 174 458 27.3 0 0 0   TOM1-054 4 -9 -9 J2 318 5                                                                                                                                                                                                                                                                                          |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOMI-046 4 53 J2 J2 J2 420 1 420 845 33.20 0 0 0   TOMI-047 4 53 J2 J2 J2 474 44 474 617 43.45 0 0 0   TOMI-049 4 53 J2 J2 J344 2 311 704 30.84 1 0 0   TOMI-049 4 53 J2 J2 J2 316 6 384 975 28.36 2 0 0 0   TOMI-050 4 53 J2 J2 402 44 402 802 33.39 0 0 0   TOM1-053 4 53 J2 J2 402 319 810 28.26 0 0 0   TOM1-054 4 -9 9 J2 318 5 291 570 35.81 27 0 0 0   TOM2-002 6 -9 9 K 468 14                                                                                                                                                                                                                                                                                         |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM1-047 4 53 J2 J2 474 4 474 617 43.45 0 0   TOM1-048 6 53 J2 J2 J2 314 2 311 704 43.45 0 0 0   TOM1-050 4 53 J2 J2 J2 515 1 515 823 33 0 0 0   TOM1-051 4 53 J2 J2 402 44 402 802 33.39 0 0 0   TOM1-051 4 53 J2 J2 410 414 402 802 33.39 0 0 0 0   TOM1-054 4 53 J2 J2 318 5 291 570 35.81 27 0 0 1   TOM2-003 4 -9 -9 E1 464 10 464 622 42.73 0 0 0   TOM2-004 4 -9 -9 E1 392 1 392                                                                                                                                                                                                                                                                                        |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOMI-048 6 53 J2 J2 314 2 311 704 30.84 1 0 0   TOMI-049 4 53 J2 J2 J2 386 6 384 975 28.36 2 0 0   TOMI-050 4 53 J2 J2 402 402 802 33.39 0 0 0   TOMI-052 4 53 J2 J2 428 0 428 762 35.97 0 0 0   TOMI-053 4 53 J2 J2 J2 318 0 174 488 27.53 0 0 0   TOM-001 4 -9 -9 J2 174 0 174 488 27.53 0 0 1   TOM-002 6 -9 -9 K 468 14 467 514 47.66 1 0 0 0   TOM-2003 4 -9 -9 E1 362 12 392 488                                                                                                                                                                                                                                                                                         |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOMI-049 4 53 J2 J2 386 6 384 975 28.36 2 0 0   TOMI-050 4 53 J2 J2 515 1 515 825 38.43 0 0 0   TOMI-051 4 53 J2 J2 402 402 802 33.99 0 0 0   TOMI-053 4 53 J2 J2 428 0 428 762 35.97 0 0 0   TOMI-053 4 53 J2 J2 319 0 319 810 28.26 0 0 0   TOM-001 4 9 9 J2 174 0 174 488 27.53 0 0 1   TOM2002 6 -9 9 K 468 14 467 514 47.66 1 0 0 0   TOM2004 4 -9 -9 E1 392 1 392 489 44.49 0                                                                                                                                                                                                                                                                                            |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOMI-050 4 53 J2 J2 515 1 515 825 38.43 0 0 0   TOMI-051 4 53 J2 J2 422 402 402 802 33.39 0 0 0 0   TOMI-052 4 53 J2 J2 428 0 428 762 35.97 0 0 0 0   TOMI-054 4 53 J2 J2 380 2 380 915 29.34 0 0 0   TOM2-001 4 -9 -9 J2 174 0 174 458 27.53 0 0 10   TOM2-002 4 -9 -9 K 468 14 464 622 42.73 0 0 0 0   TOM2-004 4 -9 -9 K 265 1 264 548 32.60 1 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                      |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOMI-051 4 53 J2 J2 402 402 802 33.39 0 0 0   TOMI-052 4 53 J2 J2 428 0 428 762 35.97 0 0 0   TOMI-053 4 53 J2 J2 319 0 319 810 28.26 0 0 0   TOMI-054 4 53 J2 J2 319 0 319 810 28.26 0 0 0   TOM2-002 6 -9 -9 J2 174 0 174 458 27.53 0 0 0 1   TOM2-002 4 -9 -9 K 468 14 467 514 47.66 1 0 0 0 0   TOM2-004 4 -9 -9 K 265 1 264 433 567 43.41 0 0 0 0   TOM2-007 4 -9 -9 J2 275 5                                                                                                                                                                                                                                                                                             |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOMI-053 4 53 J2 J2 319 0 319 810 28.26 0 0 0   TOMI-054 4 53 J2 J2 380 2 380 915 29.34 0 0 0   TOM2-001 4 -9 -9 J2 174 0 174 458 27.53 0 0 1   TOM2-003 4 -9 -9 JZ 188 5 291 570 35.81 27 0 0   TOM2-003 4 -9 -9 JZ 1464 10 464 622 42.73 0 0 0   TOM2-004 4 -9 -9 K 265 1 264 548 32.60 1 0 0 0   TOM2-007 4 -9 -9 JZ 375 5 375 661 36.20 0 0 0   TOM2-010 4 -9 -9 JZ 295 1 294 533 35.63 </td <td></td>                                                                                                                                             |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM1-054 4 53 J2 J2 380 2 380 915 29.34 0 0 1   TOM2-001 4 -9 -9 J2 174 0 174 458 27.53 0 0 1   TOM2-002 6 -9 -9 J2 318 5 291 570 35.81 27 0 0 0   TOM2-003 4 -9 -9 E1 464 10 464 622 42.73 0 0 0 0   TOM2-005 4 -9 -9 E1 392 1 392 489 44.49 0 0 0 0 0   TOM2-007 4 -9 -9 J2 375 5 375 661 3620 0 0 0 0   TOM2-008 4 -9 -9 J2 295 1 294 533 35.63 1 0 0 0   TOM2-010 4 -9 -9 K <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                           |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-001 4 -9 -9 J2 174 0 174 458 27.53 0 0 1   TOM2-002 6 -9 -9 J2 318 5 291 570 35.81 27 0 0 0   TOM2-003 4 -9 -9 K1 468 14 467 514 47.66 1 0 1   TOM2-004 4 -9 -9 E1 464 10 464 514 47.67 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td></td>                                                                                                                                                                                                                       |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-002 6 -9 -9 J2 318 5 291 570 35.81 27 0 0   TOM2-003 4 -9 -9 K 468 14 467 514 47.66 1 0 1   TOM2-004 4 -9 -9 F1 464 10 464 622 42.73 0 0 0   TOM2-005 4 -9 -9 F1 392 1 392 489 44.49 0 0 0   TOM2-007 4 -9 -9 F1 392 1 392 435 567 43.41 0 0 0 0   TOM2-007 4 -9 -9 J2 375 5 375 661 36.20 0 0 0 0   TOM2-010 4 -9 -9 J2 360 4 360 418 46.27 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                    |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-003 4 -9 -9 K 468 14 467 514 47.66 1 0 1   TOM2-004 4 -9 -9 E1 464 10 464 622 42.73 0 0 0   TOM2-005 4 -9 -9 K 265 1 264 548 32.60 1 0 0 0   TOM2-006 4 -9 -9 K 435 14 435 567 43.41 0 0 0 0   TOM2-008 4 -9 -9 J2 295 1 294 533 35.63 1 0 0 0   TOM2-010 4 -9 -9 J2 295 1 294 533 35.63 1 0 0 0   TOM2-011 4 -9 -9 K 433 0 343 408 45.67 0 0 1 0 1 0 1 0 1 0 1 0                                                                                                                                                                                                                                                                                                         |          |    |     |                  | •                        |       |                                |                |       |                   |      |               |      |
| TOM2-004 4 -9 -9 E1 464 10 464 622 42.73 0 0 0   TOM2-005 4 -9 -9 E1 392 1 392 489 44.49 0 0 0   TOM2-007 4 -9 -9 K 435 14 435 567 43.41 0 0 0   TOM2-007 4 -9 -9 J2 375 5 375 661 36.20 0 0 0   TOM2-009 4 -9 -9 J2 295 1 294 533 35.63 1 0 0   TOM2-010 4 -9 -9 J2 360 4 360 418 46.27 0 0 0   TOM2-013 4 -9 -9 K 343 0 343 408 45.67 0 0 1 0 0 10 0 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                               |          |    |     |                  | •                        |       |                                |                |       |                   |      |               |      |
| TOM2-005 4 -9 -9 K 265 1 264 548 32.60 1 0 0   TOM2-006 4 -9 -9 K 435 14 435 567 43.41 0 0 0   TOM2-007 4 -9 -9 JZ 375 5 375 661 36.20 0 0 0   TOM2-009 4 -9 -9 JZ 295 1 294 533 35.63 1 0 0   TOM2-010 4 -9 -9 JZ 295 1 294 533 35.63 1 0 0   TOM2-010 4 -9 -9 JZ 360 4 360 418 46.27 0 0 0   TOM2-013 4 -9 -9 K 336 9 334 501 40.14 0 2 1   TOM2-013 4 -9 -9 K 336 9 334 501 40.14 0                                                                                                                                                                                                                                                                                         |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-006 4 -9 -9 E1 392 1 392 489 44.49 0 0 0   TOM2-007 4 -9 -9 K 435 14 435 567 43.41 0 0 0   TOM2-008 4 -9 -9 J2 375 5 375 661 36.20 0 0 0   TOM2-009 4 -9 -9 J2 295 1 294 533 35.63 1 0 0 0   TOM2-010 4 -9 -9 K 427 6 427 515 45.33 0 0 0   TOM2-010 4 -9 -9 K 343 0 334 408 45.67 0 0 0 0 0   TOM2-013 4 -9 -9 K 336 9 334 501 40.14 0 2 1   TOM2-014 4 -9 -9 K 373 0 361 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                           |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-007 4 -9 -9 K 435 14 435 567 43.41 0 0 0   TOM2-008 4 -9 -9 J2 375 5 375 661 36.20 0 0 0 0   TOM2-009 4 -9 -9 J2 295 1 294 533 35.63 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                              |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-008 4 -9 -9 J2 375 5 375 661 36.20 0 0 0   TOM2-009 4 -9 -9 J2 295 1 294 533 35.63 1 0 0   TOM2-010 4 -9 -9 K 427 6 427 515 45.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <                                                                                                                                                                                                                                                                                                                                                                             |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-009 4 -9 -9 JZ 295 1 294 533 35.63 1 0 0   TOM2-010 4 -9 -9 K 427 6 427 515 45.33 0 0 0   TOM2-011 4 -9 -9 JZ 360 4 360 418 46.27 0 0 0   TOM2-012 4 -9 -9 K 343 0 343 408 45.67 0 0 0   TOM2-013 4 -9 -9 K 336 9 334 501 40.14 0 2 11   TOM2-014 4 -9 -9 K 373 0 362 445 45.60 0 11 0   TOM2-017 4 -9 -9 K 295 2 293 513 36.51 1 1 0   TOM2-017 4 -9 -9 K 307 0 288 500 36.71 0                                                                                                                                                                                                                                                                                          |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-010 4 -9 -9 K 427 6 427 515 45.33 0 0 0   TOM2-011 4 -9 -9 J2 360 4 360 418 46.27 0 0 0 0   TOM2-012 4 -9 -9 K 343 0 343 408 45.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                          |          |    |     |                  | •                        |       |                                |                |       |                   |      |               |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |     |                  | •                        |       |                                |                |       |                   |      |               |      |
| TOM2-012 4 -9 -9 K 343 0 343 408 45.67 0 0 0   TOM2-013 4 -9 -9 K 336 9 334 501 40.14 0 2 1   TOM2-014 4 -9 -9 K 373 0 362 445 45.60 0 11 0   TOM2-015 6 40 -9 K 295 2 293 513 36.51 1 1 0   TOM2-017 4 -9 -9 K 307 0 301 624 32.98 0 6 0   TOM2-019 4 1 J1 K 290 0 288 500 36.71 0 2 0   TOM2-020 4 1 -9 J2 254 0 254 620 29.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                               |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-013 4 -9 -9 K 336 9 334 501 40.14 0 2 1   TOM2-014 4 -9 -9 K 373 0 362 445 45.60 0 11 0   TOM2-015 6 40 -9 K 295 2 293 513 36.51 1 1 0   TOM2-017 4 -9 -9 K 307 0 301 624 32.98 0 6 0   TOM2-019 4 1 -9 J2 254 0 254 620 29.06 0 0 0   TOM2-020 4 1 -9 J2 347 0 347 393 46.89 0 0 0   TOM2-021 4 1 J2 J2 314 0 314 483 39.40 0 0 0   TOM2-023 4 2 -9 K 378 1 376 320 54.15 1                                                                                                                                                                                                                                                                                              |          |    |     |                  | •                        |       |                                |                |       |                   |      |               |      |
| TOM2-0144-9-9K373036244545.600110TOM2-015640-9K295229351336.51110TOM2-0174-9-9K307030162432.98060TOM2-01941J1K290028850036.71020TOM2-02041-9J2254025462029.06000TOM2-02141-9J2347034739346.89000TOM2-02241J2J2314031448339.40000TOM2-02342-9K378137632054.15110TOM2-02542-9F1298329835445.71000TOM2-02642-9K335033554638.02000TOM2-02742-9K364236243545.561111TOM2-02842-9K406540654542.69000TOM2-02942-9K418041652244.471                                                                                                                                                                                                                                                     |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-015640-9K295229351336.51110TOM2-0174-9-9K307030162432.98060TOM2-01941J1K290028850036.71020TOM2-02041-9J2254025462029.06000TOM2-02141-9J2347034739346.890000TOM2-02241J2J2314031448339.400000TOM2-02342-9K378137632054.151100TOM2-02542-9F1298329835445.710000TOM2-02642-9K335033554638.020000TOM2-02742-9K380037961538.191000TOM2-02842-9K406540654542.690000TOM2-02942-9K418041652244.471111TOM2-03042-9K28                                                                                                                                                                                                                                                              |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-0174-9-9K307030162432.98060TOM2-01941J1K290028850036.71020TOM2-02041-9J2254025462029.060000TOM2-02141-9J2347034739346.890000TOM2-02241J2J2314031448339.400000TOM2-02342-9K378137632054.15110TOM2-02542-9F1298329835445.710000TOM2-02642-9K335033554638.020000TOM2-02742-9K380037961538.191000TOM2-02742-9K406540654542.690000TOM2-02942-9K418041652244.471111TOM2-03142-9K285028458332.83010                                                                                                                                                                                                                                                                              |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-01941J1K290028850036.71020TOM2-02041-9J2254025462029.06000TOM2-02141-9J2347034739346.890000TOM2-02241J2J2314031448339.400000TOM2-02342-9K378137632054.151100TOM2-02542-9F1298329835445.710000TOM2-02642-9K335033554638.020000TOM2-02742-9K380037961538.191000TOM2-02742-9K406540654542.690000TOM2-02842-9K406540654542.690000TOM2-02942-9K418041652244.4711111TOM2-03142-9K285028458332.83010                                                                                                                                                                                                                                                                             |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-02041-9J2254025462029.06000TOM2-02141-9J2347034739346.89000TOM2-02241J2J2314031448339.40000TOM2-02342-9K378137632054.15110TOM2-02542-9E1298329835445.71000TOM2-02642-9K335033554638.02000TOM2-02642-9K380037961538.19100TOM2-02742-9K364236243545.56111TOM2-02842-9K406540654542.69000TOM2-02942-9K418041652244.47111TOM2-03042-9K285028458332.83010                                                                                                                                                                                                                                                                                                                      |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-02141-9J2347034739346.89000TOM2-02241J2J2314031448339.40000TOM2-02342-9K378137632054.15110TOM2-02542-9E1298329835445.71000TOM2-02642-9K335033554638.02000TOM2-02742-9K380037961538.19100TOM2-02842-9K364236243545.56111TOM2-02942-9K406540654542.69000TOM2-03042-9K285028458332.83010                                                                                                                                                                                                                                                                                                                                                                                     |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-02241J2J2314031448339.40000TOM2-02342-9K378137632054.15110TOM2-02542-9E1298329835445.71000TOM2-02642-9K335033554638.02000TOM2-02742-9K380037961538.19100TOM2-02842-9J2364236243545.561111TOM2-02942-9K406540654542.69000TOM2-03042-9K418041652244.471111TOM2-03142-9K285028458332.83010                                                                                                                                                                                                                                                                                                                                                                                   |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-02342-9K378137632054.15110TOM2-02542-9E1298329835445.71000TOM2-02642-9K335033554638.02000TOM2-02742-9K380037961538.19100TOM2-02842-9J2364236243545.561111TOM2-02942-9K406540654542.69000TOM2-03042-9K418041652244.471111TOM2-03142-9K285028458332.83010                                                                                                                                                                                                                                                                                                                                                                                                                   |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-02542-9E1298329835445.710000TOM2-02642-9K335033554638.02000TOM2-02742-9K380037961538.19100TOM2-02842-9J2364236243545.56111TOM2-02942-9K406540654542.69000TOM2-03042-9K418041652244.47111TOM2-03142-9K285028458332.83010                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-02642-9K335033554638.02000TOM2-02742-9K380037961538.19100TOM2-02842-9J2364236243545.56111TOM2-02942-9K406540654542.69000TOM2-03042-9K418041652244.47111TOM2-03142-9K285028458332.83010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-02742-9K380037961538.19100TOM2-02842-9J2364236243545.56111TOM2-02942-9K406540654542.69000TOM2-03042-9K418041652244.47111TOM2-03142-9K285028458332.83010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-02842-9J2364236243545.56111TOM2-02942-9K406540654542.69000TOM2-03042-9K418041652244.471111TOM2-03142-9K285028458332.83010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-02942-9K406540654542.69000TOM2-03042-9K418041652244.47111TOM2-03142-9K285028458332.83010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-030 4 2 -9 K 418 0 416 522 44.47 1 1 1   TOM2-031 4 2 -9 K 285 0 284 583 32.83 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-031 4 2 -9 K 285 0 284 583 32.83 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
| TOM2-032 4 30 -9 K 480 2 480 867 35.63 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |    |     |                  |                          |       |                                |                |       |                   |      |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOM2-032 | 4  | 30  | -9               | К                        | 480   | 2                              | 480            | 867   | 35.63             | 0    | 0             | 0    |

|          |    |     |                  |                          |       | Total<br>Foliated  | Total<br>Sand |       | Percent |      | Clay  |      |
|----------|----|-----|------------------|--------------------------|-------|--------------------|---------------|-------|---------|------|-------|------|
| Sample   | TT | TSG | TSS <sup>a</sup> | Petrofacies <sup>a</sup> | Total | Rocks <sup>b</sup> | Temper        | Paste | Temper  | Grog | Lumps | Unkn |
| TOM2-033 | 4  | 30  | -9               | К                        | 672   | 2                  | 671           | 813   | 45.25   | 0    | 1     | 0    |
| TOM2-034 | 4  | 30  | -9               | К                        | 460   | 0                  | 460           | 713   | 39.22   | 0    | 0     | 0    |
| TOM2-035 | 4  | 30  | -9               | К                        | 585   | 6                  | 585           | 892   | 39.61   | 0    | 0     | 0    |
| TOM2-036 | 4  | 30  | -9               | К                        | 627   | 4                  | 626           | 835   | 42.89   | 1    | 0     | 0    |
| TOM2-037 | 4  | 40  | -9               | J2                       | 371   | 2                  | 369           | 488   | 43.19   | 0    | 2     | 0    |
| TOM2-038 | 6  | 40  | -9               | Unknown                  | 412   | 54                 | 358           | 449   | 47.85   | 0    | 0     | 0    |
| TOM2-039 | 4  | 45  | -9               | К                        | 390   | 0                  | 388           | 563   | 40.92   | 2    | 0     | 0    |
| TOM2-040 | 4  | 45  | -9               | J2                       | 417   | 1                  | 417           | 481   | 46.44   | 0    | 0     | 0    |
| TOM2-041 | 9  | 2   | -9               | J2                       | 280   | 0                  | 278           | 605   | 31.64   | 0    | 2     | 0    |
| TOM2-042 | 9  | -9  | -9               | J2                       | 287   | 1                  | 287           | 533   | 35.00   | 0    | 0     | 0    |

| Table K.17a. | Continued. |
|--------------|------------|
|--------------|------------|

<sup>a</sup>B = Catalina Petrofacies, Bv = Catalina Volcanic Petrofacies, E1 = Western Tortolita Petrofacies, E2 = Central Tortolita Petrofacies, E3 = Eastern Tortolita Petrofacies, J2 = Twin Hills Petrofacies, J3 = Wasson Petrofacies, K = Black Mountain Petrofacies, M = Rillito Petrofacies.

<sup>b</sup>Normally, LMA and LMM would not be included in the Total Foliated Rocks. However, in the Tucson Basin, the gneisses may have unfoliated zones which are from the same provenance as the foliated rocks. Thus, for this project, LMA and LMM are included in the Total Foliated Rocks, except where information recorded during counting specifies that the LMA and LMM indicate other metamorphic rock types such as quartzite or metavolcanics.

samples for the former and nine samples for the latter. Seven samples contained sand from the Black Mountain Petrofacies and four samples had Eastern Tortolita Petrofacies sand, along with two samples having the Tortolita sand with volcanics composition. A single sample had Catalina Petrofacies sand. Surprisingly, while most of the samples derived from bowls, all the sand tempers were seen in bowls and jars, with the exception of the northern Tucson Mountains sand that was only noted in bowls.

The six Tucson Red-on-brown samples from the Late Rincon or Tanque Verde period also revealed the use of the "mixed" composition Wasson Petrofacies sand in one sample, while one had the typical Wasson sand. Other sand tempers in these samples derived from the Beehive, Eastern Tortolita, and Black Mountain petrofacies. A single sample had sand from the northern Tucson Mountains. The five Middle or Late Rincon or Tanque Verde Red-onbrown samples contained Wasson, Twin Hills, and Catalina petrofacies sands, along with one sample having the Tortolita with volcanics composition. Finally, one indeterminate Red-on-brown jar was made with the Wasson "mixed" composition sand.

The single Tortolita Red jar analyzed had sand temper from the Central Tortolita Petrofacies. An indeterminate Classic red ware bowl was made with a combination of Wasson Petrofacies sand and the addition of grog containing crushed schist. The indeterminate red ware bowl had sand from the Tortolita Mountains, with plentiful volcanic inclusions.

A Gila Polychrome bowl was shown to have been made locally and featured typical Wasson Petrofa-

cies sand. An indeterminate polychrome bowl was made with sand that did not closely resemble known sands in the Tucson Basin. The sand is either atypical Eastern Tortolita Petrofacies sand, or it comes from outside the basin. Given that this vessel is a polychrome, there is some chance it is extrabasinal. Both the Clapboard and Flattened Corrugated jars contained sand derived from the Twin Hills Petrofacies. Finally, a sample of an indeterminate Mogollon Corrugated bowl proved to have sand that did not match any of the known Tucson Basin sands, as was expected.

Typically, the next step in such a ceramic study is to relate the petrographic results to the groups of sherds classified only through binocular analysis. However, as discussed above, the lack of correlation between the binocular identification and the final petrographic assignment means that any assignments given to those sherds not petrographically examined is fairly tentative. An additional reason for the difficulties in relating the petrographic results to the binocular analysis of the sherds is the fact that three different individuals conducted the temper examination of the sherds. In order to illustrate how applicable the petrographic results are to the ceramic corpus, each project will be discussed separately. One caveat to this discussion is that when the specific temper source is listed as indeterminate, the petrographic results will of course show that none were correctly assigned in the binocular analysis.

Within the MAR3 samples, fourteen different temper types and generic temper assignments were investigated petrographically. Of these groups, the

| Sample Qtz Kspar Micr Plag Play | , Otz | Kspar | Micr | Plag | Plagal | Plaggn | $\mathbf{P}_{\mathbf{X}}$ | Amph | Opaq | Biot | Musc | Chlor | Oliv | Epid | Sphene | Gar | Caco |
|---------------------------------|-------|-------|------|------|--------|--------|---------------------------|------|------|------|------|-------|------|------|--------|-----|------|
| MAR3-001                        | 50    | 5     | 0    | 46   | 11     | 0      | 1                         | 4    | 5    | 0    | 1    | 1     | 0    | 5    | 0      | 0   | 0    |
| MAR3-002                        | 70    | 25    | 0    | 0    | 68     | ŋ      | 0                         | 1    | 15   | 0    | ю    | ю     | 0    | 14   | 1      | 0   | 1    |
| MAR3-003                        | 37    | ю     | 0    | 50   | 14     | 0      | 0                         | 0    | IJ   | 0    | 0    | 4     | 0    | 0    | 0      | 0   | 0    |
| MAR3-004                        | 32    | 10    | 2    | 30   | ю      | 0      | 0                         | 0    | ю    | 0    | 1    | 0     | 0    | ~    | 0      | 0   | Ļ    |
| <b>MAR3-005</b>                 | 79    | 27    | 0    | 0    | 83     | 1      | 0                         | 9    | 17   | 0    | 0    | ю     | 0    | 2    | 0      | 0   | ŋ    |
| MAR3-006                        | 111   | 19    | 0    | 0    | 06     | 0      | 0                         | 4    | 15   | 0    | 4    | 10    | 0    | ~    | Ч      | 0   | 0    |
| MAR3-007                        | 213   | 105   | 4    | 0    | 101    | 7      | 1                         | 9    | ß    | 0    | 0    | Ŋ     | 0    | ю    | 1      | 0   | 0    |
| MAR3-008                        | 171   | 92    | ю    | 0    | 105    | 0      | 0                         | 6    | 10   | 1    | 0    | 2     | 0    | 4    | Ч      | 0   | Ļ    |
| MAR3-009                        | 172   | 68    | 2    | 0    | 83     | Э      | 0                         | 1    | 20   | 0    | 0    | 2     | 0    | IJ   | 0      | 0   | 0    |
| MAR3-010                        | 143   | 99    | 0    | 0    | 74     | С      | μ                         | С    | ~    | 1    | 0    | Ŋ     | 0    | ŋ    | 0      | 0   | 0    |
| MAR3-011                        | 179   | 69    | 1    | 0    | 98     | 0      | 0                         | 2    | 11   | 0    | 0    | 1     | 0    | 0    | 0      | 0   | -1   |
| MAR3-012                        | 106   | 30    | 12   | 60   | 4      | 0      | 0                         | ъ    | 21   | 0    | 7    | ю     | 0    | 7    | ю      | 0   | 0    |
| MAR3-013                        | 108   | 33    | 0    | 0    | 110    | 0      | μ                         | 9    | 6    | 0    | 1    | С     | 0    | ŋ    | 0      | 0   | 0    |
| MAR3-014                        | 178   | 82    | 0    | 8    | 88     | 1      | 0                         | 4    | 22   | 0    | 0    | 4     | 0    | ß    | 7      | 0   | 0    |
| MAR3-015                        | 166   | 53    | 0    | 0    | 88     | ю      | 0                         | б    | 14   | 0    | ю    | 4     | 0    | Ю    | 1      | 0   | 0    |
| MAR3-016                        | 153   | 54    | 0    | 0    | 68     | 2      | 0                         | 4    | 8    | 0    | 1    | 7     | 0    | 7    | 0      | 0   | 0    |
| MAR3-017                        | 74    | 10    | 0    | 0    | 67     | ю      | 7                         | 4    | 6    | 0    | 1    | 4     | 0    | 12   | 0      | 0   | 0    |
| MAR3-018                        | 134   | 54    | 7    | 0    | 72     | 9      | 0                         | Ю    | 6    | 0    | 0    | 4     | 0    | 1    | 1      | 0   | 1    |
| MAR3-019                        | 84    | 23    | 0    | 0    | 82     | 0      | 1                         | 4    | 15   | 1    | 0    | 7     | 0    | 1    | 0      | 0   | 0    |
| MAR3-020                        | 72    | 14    | 1    | 90   | 14     | 0      | 0                         | 0    | 12   | 7    | 0    | 1     | 0    | ß    | 0      | 0   | 0    |
| MAR3-021                        | 66    | 14    | 9    | 70   | 14     | 0      | 0                         | Ŋ    | 13   | 0    | 0    | 1     | 0    | 1    | 0      | 0   | 0    |
| MAR3-022                        | 74    | 28    | 0    | 0    | 47     | ю      | 0                         | 4    | 8    | 0    | 1    | 1     | 0    | 7    | 7      | 0   | 0    |
| MAR3-023                        | 74    | 26    | 11   | 72   | 8      | 0      | 0                         | 9    | 12   | 4    | 4    | 7     | 0    | 7    | Ч      | 0   | Ļ    |
| MAR3-024                        | 167   | 55    | 0    | 0    | 50     | 2      | μ                         | 0    | ß    | С    | 16   | 9     | 0    | 4    | 0      | 9   | 0    |
| MAR3-025                        | 129   | 11    | 4    | 38   | 0      | 0      | 0                         | 1    | 25   | 7    | 56   | 10    | 0    | 0    | 0      | 0   | 0    |
| TOM1-003                        | 99    | 21    | 0    | 0    | 47     | ю      | 1                         | 1    | 18   | 0    | 55   | 16    | 0    | 10   | 0      | 0   | 0    |
| TOM1-004                        | 213   | 55    | 15   | 0    | 84     | 1      | 1                         | 1    | 13   | 0    | 0    | 4     | 0    | 1    | 0      | 0   | 22   |
| TOM1-005                        | 129   | 31    | 4    | 0    | 78     | 1      | -                         | ю    | 8    | 0    | Ю    | 6     | 0    | ю    | 0      | 0   | 0    |
| TOM1-007                        | 67    | 29    | 0    | 0    | 110    | 7      | 1                         | 9    | 21   | 0    | 9    | 14    | 0    | 10   | 0      | 0   | 24   |
| TOM1-008                        | 92    | 25    | 0    | 0    | 40     | 8      | 0                         | 0    | 17   | 0    | 47   | 9     | 0    | 4    | 0      | 0   | 0    |

| Sample   | Qtz | Kspar | Micr | Plag | Plagal | Plaggn | $\mathbf{P}_{\mathbf{X}}$ | Amph | Opaq | Biot | Musc | Chlor | Oliv | Epid | Sphene | Gar | Caco |
|----------|-----|-------|------|------|--------|--------|---------------------------|------|------|------|------|-------|------|------|--------|-----|------|
| TOM1-014 | 73  | 10    | 0    | 0    | 99     | 0      | 1                         | 0    | 10   | 0    | 0    | ъ     | 0    | 2    | 0      | 0   | 3    |
| TOM1-016 | 83  | 15    | 0    | 0    | 18     | 0      | 0                         | 1    | 9    | 0    | 0    | 1     | 0    | 2    | 0      | 0   | 10   |
| TOM1-017 | 191 | 49    | ю    | 2    | 137    | 1      | 0                         | 11   | 15   | 0    | 1    | 9     | 0    | 9    | 4      | 0   | 11   |
| TOM1-018 | 200 | 52    | 7    | 0    | 87     | 1      | 0                         | 12   | 27   | 1    | 1    | 4     | 0    | Ю    | 4      | 0   | 0    |
| TOM1-019 | 184 | 41    | 0    | 10   | 96     | 0      | 0                         | 0    | 9    | 1    | 9    | 4     | 0    | 1    | 0      | 7   | С    |
| TOM1-020 | 170 | 20    | 1    | 0    | 83     | 0      | 0                         | 0    | 6    | 0    | 6    | 16    | 0    | 1    | 0      | ß   | 0    |
| TOM1-021 | 182 | 94    | 2    | 0    | 169    | 0      | 1                         | 14   | 11   | 0    | 0    | 0     | 0    | ŋ    | ß      | 1   | ß    |
| TOM1-022 | 279 | 51    | 1    | 0    | 100    | 2      | 1                         | 11   | 23   | 0    | 0    | 1     | 0    | 4    | 1      | 0   | 0    |
| TOM1-023 | 164 | 56    | С    | 7    | 81     | 1      | 0                         | 9    | 9    | 0    | 0    | 7     | 0    | 4    | Ч      | 1   | 1    |
| TOM1-024 | 194 | 88    | 2    | 0    | 160    | 0      | С                         | 14   | 6    | 0    | 0    | 1     | 0    | 4    | 4      | 0   | 0    |
| TOM1-025 | 160 | 94    | 7    | 0    | 120    | 0      | 0                         | 2    | 10   | 0    | 10   | 9     | 0    | 9    | ß      | 7   | 0    |
| TOM1-026 | 116 | 60    | 0    | 0    | 140    | 7      | 4                         | 4    | 25   | 0    | 0    | ß     | 0    | 4    | 0      | 0   | 7    |
| TOM1-027 | 225 | 104   | 9    | 1    | 106    | С      | 1                         | 9    | 10   | 0    | 0    | 1     | 0    | 0    | Ч      | 0   | 0    |
| TOM1-028 | 132 | 72    | 14   | 0    | 104    | 1      | 0                         | 4    | 19   | 0    | ŝ    | 1     | 0    | 0    | 0      | 0   | 15   |
| TOM1-029 | 202 | 32    | 1    | IJ   | 49     | З      | 1                         | 10   | 8    | 0    | 0    | 4     | 0    | 1    | 0      | 0   | 0    |
| TOM1-030 | 192 | 60    | 1    | 1    | 46     | 0      | 0                         | 4    | 6    | 0    | 0    | 0     | 0    | 0    | 0      | 0   | 12   |
| TOM1-031 | 303 | 161   | 2    | 0    | 145    | 1      | 4                         | 8    | 13   | 0    | 1    | 2     | 1    | ŋ    | 1      | 0   | 0    |
| TOM1-032 | 239 | 134   | 24   | 0    | 287    | 1      | 9                         | 1    | 20   | 1    | 1    | 4     | 0    | Ю    | ю      | 0   | 0    |
| TOM1-034 | 178 | 28    | 0    | 0    | 65     | 1      | 0                         | 5    | 6    | 0    | 1    | Ю     | 0    | 7    | 1      | 0   | 0    |
| TOM1-036 | 163 | 54    | 0    | 0    | 93     | 0      | 0                         | 0    | 4    | 1    | 4    | С     | 0    | 8    | 0      | 0   | 0    |
| TOM1-038 | 197 | 54    | 0    | 0    | 110    | 0      | 1                         | 6    | 4    | 0    | 0    | Ŋ     | 0    | ß    | 4      | 1   | 1    |
| TOM1-040 | 94  | 30    | 0    | 0    | 120    | 0      | 1                         | 28   | 32   | 0    | 0    | 7     | 0    | Ю    | 8      | 0   | 0    |
| TOM1-041 | 211 | 58    | 7    | 14   | 138    | 0      | 0                         | 10   | 21   | 1    | 1    | 4     | 0    | 8    | ю      | 0   | 10   |
| TOM1-042 | 94  | 55    | 4    | Ŋ    | 57     | 1      | 0                         | 4    | 8    | 0    | 0    | ю     | 0    | ŋ    | 0      | 0   | 0    |
| TOM1-043 | 88  | 65    | 4    | 0    | 66     | 2      | 0                         | 0    | 34   | 23   | ю    | 44    | 0    | 4    | 0      | 0   | 0    |
| TOM1-044 | 170 | 24    | 0    | 0    | 154    | 2      | 0                         | 85   | Ŋ    | ю    | 0    | 15    | 0    | 7    | Ŋ      | 0   | 0    |
| TOM1-045 | 77  | 27    | 7    | 0    | 73     | 4      | Ю                         | 1    | 8    | 0    | 0    | 7     | 0    | 4    | 0      | 0   | 0    |
| TOM1-046 | 68  | 19    | 0    | 0    | 51     | 4      | 0                         | 1    | 17   | 1    | 0    | 11    | 0    | 0    | 0      | 0   | 1    |
| TOM1-047 | 104 | 0     | 9    | 104  | 1      | 1      | IJ                        | 2    | 18   | 7    | 1    | Ŋ     | 0    | ~    | 0      | 0   | ю    |
| TOM1-048 | 75  | 9     | 0    | 0    | 38     | Ю      | 1                         | 0    | 12   | 1    | 4    | Ŋ     | 0    | 13   | 0      | 0   | 0    |
| TOM1-049 | 78  | 13    | 0    | 0    | 64     | 2      | 0                         | 2    | 39   | 1    | 1    | Ŋ     | 0    | Ŋ    | 0      | 0   | 0    |
| TOM1-050 | 165 | 35    | 0    | 0    | 71     | 1      | 0                         | 1    | 19   | 0    | 0    | 4     | 0    | 0    | 0      | 0   | Ю    |

Table K.17b. Continued.

| Continued. |  |
|------------|--|
| K.17b. (   |  |
| Table      |  |

| _                         | _        |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Caco                      | 2        | 0        | 1        | 9        | 0        | 7        | 9        | 0        | 0        | 1        | ъ        | 0        | 4        | 4        | 1        | 0        | 17       | 0        | 22       | 7        | 0        | 0        | 0        | 5        | 0        | 7        | 4        | 7        | С        | С        | 9        | 7        |
| Gar                       | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 1        | 0        | 0        | 0        | 1        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 1        | 0        | 0        | 0        | 0        | 0        | 0        |
| Sphene                    | 0        | 0        | 0        | 0        | 1        | 0        | 1        | 2        | 0        | 7        | 0        | 4        | 0        | 1        | 2        | 0        | 0        | 1        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 7        | 2        | 0        | 0        | 1        | 0        | 0        |
| Epid                      | 8        | 0        | 4        | ß        | 1        | 7        | 9        | 7        | 0        | 1        | 7        | 1        | 4        | 9        | 0        | 1        | 0        | 0        | 1        | 8        | 0        | 1        | 4        | 0        | 7        | 4        | 1        | 5        | 2        | С        | 0        | Ч        |
| Oliv                      | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Chlor                     | 9        | 1        | 7        | 8        | IJ       | 6        | ß        | 6        | 7        | 2        | С        | ß        | 7        | 4        | 7        | 1        | 12       | 1        | Ю        | 9        | 0        | ß        | 4        | 1        | 7        | 7        | 12       | 7        | ß        | 4        | 7        | 7        |
| Musc                      | 0        | 0        | 1        | 2        | 0        | 13       | 1        | 0        | 0        | 0        | 0        | 0        | 0        | 2        | 0        | 0        | 2        | 0        | б        | 0        | 0        | 0        | 0        | 0        | 9        | 1        | 0        | 0        | 0        | 0        | 2        | IJ       |
| Biot                      | 0        | 0        | 0        | 0        | Ч        | 0        | 0        | 1        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 2        | 0        | 0        | 0        | Ч        | 0        | 0        | 0        | 0        | 0        | 0        | С        | 0        | ß        | 1        | 0        | Ч        |
| Opaq                      | 26       | 18       | 11       | 16       | 12       | 17       | 10       | 21       | 7        | 7        | 4        | 12       | ×        | 9        | 4        | 10       | 11       | 10       | 22       | 12       | 8        | 8        | 11       | 9        | ß        | 12       | 4        | 14       | 15       | 7        | 27       | 4        |
| Amph                      | 1        | 0        | 2        | 2        | 4        | 4        | 9        | 16       | 4        | 13       | 1        | ß        | С        | 16       | 1        | 2        | 2        | ю        | Э        | ß        | 2        | 1        | 4        | 0        | 0        | 7        | 1        | 2        | 2        | С        | С        | 7        |
| $\mathbf{P}_{\mathbf{X}}$ | 1        | 0        | 1        | 0        | 0        | 1        | 0        | 0        | 1        | 7        | 0        | 0        | 0        | 0        | 1        | 0        | 0        | IJ       | 0        | 0        | 1        | 1        | 4        | 0        | 1        | 0        | 1        | 0        | 0        | 0        | 0        | 0        |
| Plaggn                    | 2        | ю        | 1        | 2        | 0        | 1        | 0        | 0        | 2        | 0        | 0        | 7        | 7        | 2        | 0        | 0        | 2        | 1        | 0        | 0        | 0        | 2        | 1        | 0        | 1        | 1        | ŝ        | 1        | 1        | 0        | Ŋ        | 0        |
| Plagal                    | 81       | 28       | 52       | 62       | 33       | 67       | 92       | 105      | 60       | 100      | 86       | 72       | 35       | 78       | 75       | 101      | 44       | 101      | 41       | 46       | 82       | 27       | 41       | 51       | 97       | 85       | 105      | 119      | 67       | 86       | 166      | 71       |
| Plag                      | 0        | 0        | 14       | 0        | 0        | 0        | 2        | 0        | 0        | 0        | 2        | 0        | 0        | 12       | 0        | 0        | 2        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 1        | 0        | 0        | 0        | 0        |
| Micr                      | 0        | 0        | 0        | 0        | 0        | 0        | 10       | 2        | 2        | 0        | 4        | Ч        | Ŋ        | 7        | 1        | 4        | 0        | 18       | 0        | 4        | 0        | 0        | 0        | 0        | 0        | 0        | 22       | 1        | ß        | 4        | С        | 7        |
| Kspar                     | 13       | 10       | 0        | 16       | 15       | 26       | 93       | 90       | 43       | 90       | 85       | 80       | 26       | 87       | 76       | 92       | 72       | 78       | 65       | 32       | 51       | 15       | 16       | 27       | 71       | 71       | 35       | 09       | 81       | 72       | 63       | 78       |
| Qtz                       | 71       | 86       | 65       | 55       | 42       | 60       | 192      | 174      | 66       | 151      | 167      | 118      | 104      | 171      | 140      | 74       | 101      | 120      | 73       | 47       | 79       | 43       | 55       | 63       | 129      | 92       | 80       | 84       | 134      | 165      | 98       | 66       |
| Sample                    | TOM1-051 | TOM1-052 | TOM1-053 | TOM1-054 | TOM2-001 | TOM2-002 | TOM2-003 | TOM2-004 | TOM2-005 | TOM2-006 | TOM2-007 | TOM2-008 | TOM2-009 | TOM2-010 | TOM2-011 | TOM2-012 | TOM2-013 | TOM2-014 | TOM2-015 | TOM2-017 | TOM2-019 | TOM2-020 | TOM2-021 | TOM2-022 | TOM2-023 | TOM2-025 | TOM2-026 | TOM2-027 | TOM2-028 | TOM2-029 | TOM2-030 | TOM2-031 |

| Sample   | Qtz | Kspar | Micr | Plag | Plagal | Plaggn | $\mathbf{P}_{\mathbf{X}}$ | Amph | Opaq | Biot | Musc | Chlor | Oliv | Epid | Sphene | Gar | Caco |
|----------|-----|-------|------|------|--------|--------|---------------------------|------|------|------|------|-------|------|------|--------|-----|------|
| TOM2-032 | 192 | 109   | 3    | 0    | 119    | 0      | 2                         | 1    | 7    | 0    | 1    | 2     | 0    | 1    | 1      | 0   | 0    |
| TOM2-033 | 278 | 132   | 0    | 0    | 166    | 0      | С                         | 7    | 24   | 0    | 2    | 7     | 0    | 2    | 0      | 0   | 0    |
| TOM2-034 | 130 | 82    | 4    | 0    | 121    | 0      | 0                         | ю    | 14   | 4    | 1    | ß     | 0    | 1    | 0      | 1   | 8    |
| TOM2-035 | 244 | 129   | 8    | 2    | 112    | 0      | 1                         | 6    | 14   | -1   | С    | 2     | 0    | С    | 0      | 1   | 0    |
| TOM2-036 | 323 | 67    | 2    | 1    | 93     | 7      | С                         | 10   | 17   | 0    | 1    | 12    | 0    | С    | 1      | 0   | 0    |
| TOM2-037 | 169 | 72    | 0    | 0    | 57     | 1      | 0                         | 7    | 9    | 2    | 2    | С     | 0    | ŝ    | 0      | 0   | 0    |
| TOM2-038 | 160 | 20    | 0    | 0    | 45     | 0      | 0                         | 0    | 30   | 0    | 85   | 14    | 0    | 0    | 0      | 0   | 0    |
| TOM2-039 | 66  | 31    | 2    | 0    | 91     | 2      | 0                         | 11   | 28   | 0    | 0    | 12    | 0    | 6    | 0      | 0   | 4    |
| TOM2-040 | 154 | 83    | 0    | 0    | 95     | 0      | 7                         | 4    | 6    | 0    | 1    | 0     | 0    | 4    | 2      | 0   | 1    |
| TOM2-041 | 51  | 16    | 0    | 0    | 52     | 0      | 7                         | 7    | 20   | 0    | 0    | С     | 0    | 6    | 0      | 0   | З    |
| TOM2-042 | 69  | 36    | 0    | 37   | 0      | 0      | 0                         | 3    | 4    | 2    | 1    | 2     | 0    | 0    | 0      | 0   | 0    |

| Continued.   |  |
|--------------|--|
| Table K.17b. |  |

| Sample   | Lmm | Lmf | Lma | Lmt | Lmtp | Lmvf | Lmss | Lvfb | Lvf | Lvi | Lvm | Lvv | Lvh | $\operatorname{Lss}$ | Lsch | Lsca | Sopaq | Smusc | Schlor |
|----------|-----|-----|-----|-----|------|------|------|------|-----|-----|-----|-----|-----|----------------------|------|------|-------|-------|--------|
| MAR3-001 | 0   | 0   | 0   | 0   | 0    | 0    | 2    | 7    | 47  | 4   | 0   | 19  | 0   | 0                    | Э    | 14   | 0     | 0     | 0      |
| MAR3-002 | 0   | 0   | 0   | 7   | 0    | ю    | 7    | 4    | 60  | 75  | 0   | 15  | 55  | 0                    | 0    | 0    | 0     | 0     | 0      |
| MAR3-003 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 16   | 35  | ю   | 0   | 6   | 0   | 0                    | 1    | 1    | 0     | 0     | 0      |
| MAR3-004 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 9    | 41  | 4   | 0   | 7   | 1   | 0                    | Ŋ    | 7    | 0     | 0     | 0      |
| MAR3-005 | 0   | ŝ   | 0   | 0   | 0    | 4    | 0    | 2    | 87  | 18  | 0   | 9   | 13  | 0                    | 0    | 21   | 0     | 0     | 0      |
| MAR3-006 | 0   | 1   | 0   | 0   | 0    | 2    | С    | 1    | 39  | 18  | 0   | ×   | 30  | 0                    | 0    | 0    | 0     | Ю     | 0      |
| MAR3-007 | 0   | 0   | 0   | 7   | 0    | 0    | 1    | 0    | 6   | 19  | 0   | ю   | 27  | 0                    | 0    | 0    | 0     | 0     | 0      |
| MAR3-008 | 0   | 1   | 0   | 4   | 0    | 2    | ю    | 0    | 6   | 19  | 0   | 4   | 13  | 0                    | 0    | 1    | 0     | 0     | 0      |
| MAR3-009 | 0   | 0   | 0   | 9   | 0    | 0    | IJ   | 0    | 1   | 0   | 0   | 0   | 9   | 0                    | 0    | 0    | 0     | 0     | 0      |
| MAR3-010 | 0   | 0   | 0   | Ŋ   | 0    | 1    | 1    | 2    | 17  | 17  | 0   | 8   | 19  | 4                    | 0    | 8    | 0     | 0     | 0      |
| MAR3-011 | 0   | 0   | 0   | 7   | 0    | 0    | 1    | 0    | 12  | 8   | 0   | ю   | 16  | 0                    | 0    | 0    | 0     | 0     | 0      |
| MAR3-012 | 0   | 0   | 0   | 1   | 0    | 0    | 1    | 0    | 0   | 0   | 0   | 0   | 0   | 0                    | 1    | 0    | 0     | 0     | 0      |
| MAR3-013 | 0   | 0   | 0   | 1   | 0    | 0    | 0    | 0    | 13  | 14  | 2   | 7   | 0   | 0                    | 0    | ß    | 0     | 0     | 0      |
| MAR3-014 | 0   | 0   | 0   | Ю   | 0    | 7    | 1    | 0    | 10  | 19  | 0   | 4   | 17  | 0                    | 0    | 0    | 0     | 0     | 0      |
| MAR3-015 | 0   | 0   | 1   | 14  | 0    | 0    | 0    | 1    | 11  | 17  | 0   | 7   | ŋ   | 0                    | 0    | 25   | 0     | 0     | 0      |
| MAR3-016 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 13  | 6   | 0   | 8   | 17  | 0                    | 0    | 10   | 0     | 0     | 0      |
| MAR3-017 | 0   | 0   | 0   | 7   | 0    | 1    | Ю    | 1    | 54  | 38  | 0   |     | 18  | 1                    | 1    | IJ   | 0     | 0     | 0      |
| MAR3-018 | 0   | 0   | 0   | 17  | 0    | 1    | 0    | 0    | ß   | 15  | 0   | 4   | 16  | 0                    | 0    | ~    | 0     | 0     | 0      |
| MAR3-019 | 0   | 0   | 0   | 4   | 0    | 1    | 4    | 0    | 18  | 4   | 0   | 0   | 22  | 0                    | 0    | 20   | 0     | 0     | 0      |
| MAR3-020 | 0   | 0   | 0   | 4   | 0    | 0    | 1    | 0    | 19  | Ю   | 0   | 7   | 0   | 0                    | 8    | 9    | 0     | 0     | 0      |
| MAR3-021 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 1    | 13  | 7   | 0   | ю   | 0   | 0                    | ю    | 15   | 0     | 0     | 0      |
| MAR3-022 | 0   | 0   | 0   | ю   | 0    | ß    | 7    | 7    | 23  | 22  | 0   | 4   | 6   | 0                    | 0    | 0    | 0     | 0     | 0      |
| MAR3-023 | 0   | 0   | 0   | Ю   | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0                    | 1    | 0    | 0     | 0     | 0      |
| MAR3-024 | 0   | 0   | 0   | Ŋ   | 0    | 1    | 4    | 7    | 11  | 24  | 0   | 7   | 13  | 0                    | 0    | 7    | 0     | 0     | 0      |
| MAR3-025 | 0   | 0   | 0   | Ŋ   | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0                    | 0    | 1    | Ю     | ß     | 1      |
| TOM1-003 | 0   | 1   | 0   | 7   | 0    | Ю    | 1    | 1    | 30  | 25  | 0   | Ŋ   | 21  | 1                    | 1    | 0    | 0     | 0     | 0      |
| TOM1-004 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 1    | 27  | 7   | 0   | ю   | 84  | 1                    | ю    | 11   | 0     | 0     | 0      |
| TOM1-005 | 1   | 0   | 0   | 4   | 0    | 0    | 0    | Э    | 11  | 9   | 0   | 0   | 14  | 0                    | 0    | ~    | 0     | 0     | 0      |
| TOM1-007 | 0   | 0   | 0   | 0   | 0    | 0    | 1    | 0    | 6   | 9   | 0   | ы   | 0   | 0                    | 0    | 0    | 0     | 0     | 0      |
| TOM1-008 | Ч   | 0   | 0   | 4   | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0                    | 0    | ы    | 0     | 0     | 0      |

| Sample   | Lmm | Lmf | Lma | Lmt | Lmtp | Lmvf | Lmss | Lvfb | Lvf | Lvi | Lvm | Lvv | Lvh | Lss | Lsch | Lsca | Sopaq | Smusc | Schlor |
|----------|-----|-----|-----|-----|------|------|------|------|-----|-----|-----|-----|-----|-----|------|------|-------|-------|--------|
| TOM1-014 | 0   | 0   | 0   | 0   | 0    | -1   | Э    | 4    | 48  | 24  | 0   | 4   | 16  | 1   | 0    | 0    | 0     | 0     | 0      |
| TOM1-016 | 0   | 0   | 0   | Ч   | 0    | 0    | 7    | ю    | 06  | 25  | 0   | 4   | 45  | 0   | 7    | 17   | 0     | 0     | 0      |
| TOM1-017 | 0   | 1   | 1   | 4   | 0    | 0    | 0    | 7    | 10  | 4   | 0   | 4   | 6   | 0   | 0    | 11   | 0     | 0     | 0      |
| TOM1-018 | 0   | 0   | 0   | 4   | 0    | 0    | 1    | 0    | 0   | 0   | 0   | 0   | 1   | 0   | 0    | 12   | 0     | 0     | 0      |
| TOM1-019 | 0   | 0   | 0   | 27  | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0    | ю    | 0     | 0     | 0      |
| TOM1-020 | 0   | 7   | 0   | 10  | 0    | 0    | 0    | 0    | 0   | 1   | 0   | 0   | 0   | 0   | 0    | 0    | 0     | 0     | 0      |
| TOM1-021 | 0   | 0   | 0   | 1   | 0    | 0    | 0    | 0    | 22  | 15  | 0   | 4   | 11  | 1   | ю    | ю    | 0     | 0     | 0      |
| TOM1-022 | 0   | 0   | 0   | 1   | 0    | 0    | 1    | 0    | 10  | 16  | 0   | 4   | 14  | 0   | 7    | ß    | 0     | 0     | 0      |
| TOM1-023 | 7   | 0   | 0   | 9   | 0    | 0    | 0    | 0    | 11  | 10  | 0   | 6   | 10  | 0   | 1    | 1    | 0     | 0     | 0      |
| TOM1-024 | 0   | 0   | 0   | 7   | 0    | 0    | 1    | 0    | 0   | 0   | 0   | 0   | 0   | 1   | 0    | 7    | 0     | 0     | 0      |
| TOM1-025 | 0   | 0   | 0   | 0   | 0    | 1    | 0    | 0    | 4   | ~   | 0   | 5   | 20  | 1   | 4    | 18   | 0     | 0     | 0      |
| TOM1-026 | 0   | 0   | 0   | 0   | 0    | 1    | 0    | 0    | 28  | 18  | 0   | 1   | 26  | 0   | 0    | Ю    | 0     | 0     | 0      |
| TOM1-027 | 0   | 0   | 0   | 1   | 0    | 0    | 0    | 0    | 14  | 16  | 0   | С   | 19  | 0   | 4    | 0    | 0     | 0     | 0      |
| TOM1-028 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | ю    | 22  | 24  | 0   | 9   | 46  | 2   | 0    | ~    | 0     | 0     | 0      |
| TOM1-029 | 0   | 0   | 0   | 4   | 0    | 0    | 0    | 1    | 13  | 19  | 0   | С   | 21  | 0   | 0    | 1    | 0     | 0     | 0      |
| TOM1-030 | 0   | 0   | 0   | 4   | 0    | 1    | 0    | 1    | 61  | 4   | 0   | 9   | 58  | 1   | 1    | 9    | 0     | 0     | 0      |
| TOM1-031 | 0   | 0   | 0   | 4   | 0    | 0    | 0    | 0    | 13  | 18  | 0   | 4   | 28  | 7   | Ю    | 4    | 0     | 0     | 0      |
| TOM1-032 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | ~   | 20  | 1   | 0   | 46  | 0   | 0    | 0    | 0     | 0     | 0      |
| TOM1-034 | 0   | 0   | 0   | 11  | 0    | 0    | 1    | 0    | Ŋ   | 9   | 0   | 0   | 4   | 0   | 1    | 0    | 0     | 0     | 0      |
| TOM1-036 | 0   | 0   | 0   | 4   | 0    | 0    | 0    | 4    | 16  | 10  | 0   | 4   | 1   | 1   | 0    | 1    | 0     | 0     | 0      |
| TOM1-038 | 0   | 0   | 0   | 9   | 0    | 0    | 0    | 0    | 0   | 7   | 0   | 7   | 0   | 0   | 0    | 4    | 0     | 0     | 0      |
| TOM1-040 | 0   | 0   | 0   | 8   | 0    | 0    | 0    | 0    | 1   | 1   | 0   | 0   | 0   | 0   | 0    | 0    | 0     | 0     | 0      |
| TOM1-041 | 0   | 0   | 0   | 9   | 0    | 0    | 0    | 0    | ы   | Ю   | 0   | 1   | 7   | 0   | 0    | б    | 0     | 0     | 0      |
| TOM1-042 | 0   | 0   | 0   | ß   | 0    | 0    | 0    | 0    | ю   | 12  | 0   | 4   | 12  | 0   | 0    | 6    | 0     | 0     | 0      |
| TOM1-043 | 0   | 0   | 0   | 0   | 1    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0     | 0     | 0      |
| TOM1-044 | 0   | 0   | 0   | 1   | 0    | 0    | 1    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0     | 0     | 0      |
| TOM1-045 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 15   | 74  | 30  | 1   | 22  | 25  | 0   | б    | 11   | 0     | 0     | 0      |
| TOM1-046 | 0   | 1   | 0   | 0   | 0    | ŋ    | 1    | Ŋ    | 135 | 18  | 1   | 20  | 41  | 0   | Ŋ    | 12   | 0     | 0     | 0      |
| TOM1-047 | 0   | ю   | 0   | 1   | 0    | 1    | 1    | 12   | 77  | 47  | 0   | 4   | 51  | 1   | Ю    | 11   | 0     | 0     | 0      |
| TOM1-048 | 0   | Ч   | 0   | 1   | 0    | 4    | 4    | 1    | 67  | 31  | 0   | 13  | 28  | 0   | 0    | 7    | 0     | 0     | 0      |
| TOM1-049 | 0   | ю   | 0   | ю   | 0    | Ч    | 4    | 6    | 80  | 40  | 0   | IJ  | 27  | 0   | 1    | Ч    | 0     | 0     | 0      |
| TOM1-050 | 0   | 0   | 0   | 1   | 0    | 0    | 0    | 7    | 81  | 14  | 1   | 11  | 65  | 1   | 0    | 38   | 0     | 0     | 0      |

| (.17c. Continued. |  |
|-------------------|--|
| Table K.17        |  |

| Sample   | Lmm | Lmf | Lma | Lmt | Lmtp | Lmvf | Lmss | Lvfb | Lvf | Lvi | Lvm | Lvv | Lvh | Lss | Lsch | Lsca | Sopaq | Smusc | Schlor |
|----------|-----|-----|-----|-----|------|------|------|------|-----|-----|-----|-----|-----|-----|------|------|-------|-------|--------|
| TOM1-051 | 0   | 1   | 0   | 3   | 0    | 2    | 2    | 4    | 73  | 35  | 0   | 16  | 48  | 3   | 2    | 2    | 0     | 0     | 0      |
| TOM1-052 | 0   | 0   | 0   | 0   | 0    | 1    | 1    | 4    | 114 | 28  | 0   | 15  | 95  | 0   | 1    | 23   | 0     | 0     | 0      |
| TOM1-053 | 0   | 0   | 0   | 0   | 0    | 1    | 2    | С    | 56  | 33  | 0   | 11  | 49  | 0   | 1    | 8    | 0     | 0     | 0      |
| TOM1-054 | 0   | 1   | 0   | 1   | 0    | 1    | 1    | ß    | 06  | 30  | 0   | 10  | 50  | 1   | 1    | 15   | 0     | 0     | 0      |
| TOM2-001 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 18  | 10  | 0   | 6   | 22  | 0   | 0    | 0    | 0     | 0     | 0      |
| TOM2-002 | 0   | 0   | 0   | ŝ   | 1    | 0    | 2    | 0    | 27  | 17  | 0   | 6   | 26  | 0   | 0    | С    | 0     | 1     | 0      |
| TOM2-003 | Э   | 1   | 0   | 10  | 0    | 0    | 0    | 1    | 11  | 4   | 0   | 2   | 9   | 0   | 0    | Ч    | 0     | 0     | 0      |
| TOM2-004 | 0   | 2   | 0   | 8   | 0    | 0    | 1    | 1    | 4   | 11  | 0   | ю   | 7   | 0   | 0    | Ŋ    | 0     | 0     | 0      |
| TOM2-005 | 0   | 0   | 0   | 1   | 0    | 0    | 0    | 0    | ~   | 14  | 0   | 1   | 13  | 0   | 0    | С    | 0     | 0     | 0      |
| TOM2-006 | 0   | 0   | 0   | -   | 0    | 0    | 7    | 0    | Ю   | Ю   | 0   | 0   | 1   | 0   | 0    | ×    | 0     | 0     | 0      |
| TOM2-007 | 0   | 4   | 0   | 10  | 0    | 0    | 0    | 0    | 7   | 11  | 0   | 1   | 18  | 0   | 1    | 20   | 0     | 0     | 0      |
| TOM2-008 | 0   | 0   | 0   | ß   | 0    | 0    | 1    | 0    | 11  | 21  | 0   | 7   | 34  | 0   | 0    | Ŋ    | 0     | 0     | 0      |
| TOM2-009 | 0   | 0   | 0   | 1   | 0    | б    | 1    | 1    | 27  | 14  | 0   | 1   | 45  | 0   | 0    | 6    | 0     | 0     | 0      |
| TOM2-010 | 1   | 0   | 0   | ß   | 0    | 1    | 0    | 0    | 4   | ŋ   | 0   | 0   | 7   | 0   | 0    | 8    | 0     | 0     | 0      |
| TOM2-011 | 0   | 0   | 0   | 4   | 0    | 0    | 7    | 1    | 8   | 12  | 0   | Ю   | 14  | 0   | 0    | ß    | 0     | 0     | 0      |
| TOM2-012 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 9   | 22  | 0   | 0   | 24  | 0   | 0    | 4    | 0     | 0     | 0      |
| TOM2-013 | 1   | 0   | 0   | 4   | 0    | 1    | Ю    | 1    | 11  | 20  | 0   | 4   | 4   | 1   | 1    | 10   | 0     | 1     | 0      |
| TOM2-014 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 1   | 9   | 0   | 0   | 6   | 0   | 0    | 8    | 0     | 0     | 0      |
| TOM2-015 | 0   | 1   | 0   | 1   | 0    | 0    | 0    | 1    | ß   | 21  | 0   | 4   | 19  | 0   | 0    | 8    | 0     | 0     | 0      |
| TOM2-017 | 0   | 0   | 0   | 0   | 0    | 0    | 1    | 1    | 28  | 38  | 0   | ~   | 54  | 0   | 0    | 4    | 0     | 0     | 0      |
| TOM2-019 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 1    | 28  | 19  | 0   | 1   | 11  | 0   | 0    | ß    | 0     | 0     | 0      |
| TOM2-020 | 0   | 0   | 0   | 0   | 0    | 1    | 0    | 8    | 109 | 4   | 0   | 10  | 16  | 0   | 0    | Ю    | 0     | 0     | 0      |
| TOM2-021 | 0   | 0   | 0   | 0   | 0    | 1    | 0    | ю    | 63  | 54  | 1   | 6   | 72  | 0   | 0    | 7    | 0     | 0     | 0      |
| TOM2-022 | 0   | 0   | 0   | 0   | 0    | 1    | 0    | 0    | 46  | 11  | 0   | 4   | 59  | 0   | 0    | 40   | 0     | 0     | 0      |
| TOM2-023 | 0   | 0   | 0   | 1   | 0    | 0    | 0    | 0    | 11  | 38  | 0   | 1   | 8   | 0   | 0    | ю    | 0     | 0     | 0      |
| TOM2-025 | 0   | 0   | 0   | Ю   | 0    | 0    | 0    | 0    | 1   | 1   | 0   | 0   | 0   | 1   | 0    | 4    | 0     | 0     | 0      |
| TOM2-026 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 25   | 13  | ß   | 0   | 1   | 4   | 0   | 0    | 8    | 0     | 0     | 0      |
| TOM2-027 | 0   | 0   | 0   | 0   | 0    | 1    | 0    | 7    | 42  | 14  | 0   | 6   | 10  | 0   | 0    | Ŋ    | 0     | 0     | 0      |
| TOM2-028 | 0   | 1   | 0   | 1   | 0    | 1    | 1    | 0    | IJ  | 15  | 0   | ю   | 13  | 0   | 0    | 1    | 0     | 0     | 0      |
| TOM2-029 | 0   | 0   | 0   | IJ  | 0    | 0    | 0    | 0    | 4   | 15  | 0   | 4   | 15  | 1   | 7    | ß    | 0     | 0     | 0      |
| TOM2-030 | 0   | 0   | 0   | 0   | 0    | 1    | 0    | 0    | 12  | 9   | 0   | 1   | 12  | 0   | 0    | ю    | 0     | 0     | 0      |
| TOM2-031 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 7   | 4   | 0   | Ч   | ß   | 0   | 0    | 0    | 0     | 0     | 0      |

| Sample   | Lmm | Lmf | Lma | Lmt | Lmtp | Lmvf | Lmss | Lvfb | Lvf | Lvi | Lvm | Lvv | Lvh | Lss | Lsch | Lsca | Sopaq | Smusc | Schlor |
|----------|-----|-----|-----|-----|------|------|------|------|-----|-----|-----|-----|-----|-----|------|------|-------|-------|--------|
| TOM2-032 | 0   | 0   | 0   | 2   | 0    | 0    | 0    | 0    | ю   | 18  | 0   | 2   | 14  | 0   | 1    | 2    | 0     | 0     | 0      |
| TOM2-033 | 0   | 0   | 0   | 7   | 0    | 0    | 0    | 1    | ß   | 21  | 0   | 1   | 23  | 0   | 0    | 0    | 0     | 0     | 0      |
| TOM2-034 | 0   | 0   | 0   | 0   | 0    | 0    | 0    | IJ   | 28  | 25  | 0   | 11  | 10  | 0   | 0    | 7    | 0     | 0     | 0      |
| TOM2-035 | 0   | 7   | 0   | 4   | 0    | 0    | 1    | 0    | 0   | 9   | 0   | 4   | 31  | 7   | 0    | 9    | 0     | 0     | 0      |
| TOM2-036 | 0   | 0   | 0   | 4   | 0    | 0    | 2    | 0    | 9   | 19  | 0   | 4   | 12  | Ŋ   | 0    | 10   | 0     | 0     | 0      |
| TOM2-037 | 0   | 0   | 0   | 7   | 0    | 1    | 0    | 0    | 11  | 8   | 0   | С   | 24  | 0   | 0    | С    | 0     | 0     | 0      |
| TOM2-038 | 0   | 1   | 0   | 12  | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 9     | 25    | 10     |
| TOM2-039 | 0   | 0   | 0   | 0   | 0    | 0    | 7    | 0    | 32  | 16  | 0   | 4   | 22  | 0   | 0    | 20   | 0     | 0     | 0      |
| TOM2-040 | 0   | 0   | 0   | 1   | 0    | 2    | 0    | 0    | ß   | 14  | 0   | 9   | 24  | 0   | 0    | 10   | 0     | 0     | 0      |
| TOM2-041 | 0   | 0   | 0   | 0   | 0    | 1    | 1    | 2    | 40  | 18  | 0   | 12  | 40  | 0   | 0    | 9    | 0     | 0     | 0      |
| TOM2-042 | 1   | 0   | 0   | 0   | 0    | 0    | 0    | 1    | 32  | 7   | 0   | 1   | 53  | 0   | 0    | 36   | 0     | 0     | 0      |

| ued.   |
|--------|
| ontinu |
| 7c. C  |
| e K.1  |
| Table  |

**Table K.18.** Qualitative observations for analyzed samples, the Yuma Wash site. (Parameter definitions are given in Table K.16.)

| <b>A.</b> Qualitative data | for the less | than sand- | sized fraction. |
|----------------------------|--------------|------------|-----------------|
|----------------------------|--------------|------------|-----------------|

|                      | Ν       | latrix Attr | ibutes       | Silt Fr  | action    | Clay F   | raction   |
|----------------------|---------|-------------|--------------|----------|-----------|----------|-----------|
| Sample               | Opacity | Color       | Heterogenity | Dominant | Secondary | Dominant | Secondary |
| MAR3-001             | 2       | 19          | 0            | 1        | 20        | 9        | 40        |
| MAR3-002             | 3       | 25          | 1            | 1        | 20        | 9        | 40        |
| MAR3-003             | 3       | 40          | 1            | 1        | 10        | 9        | 40        |
| MAR3-004             | 3       | 23          | 1            | 1        | 10        | 9        | 40        |
| MAR3-005             | 3       | 40          | 0            | 1        | 20        | 9        | 40        |
| MAR3-006             | 3       | 25          | 1            | 1        | 20        | 9        | 40        |
| MAR3-007             | 3       | 42          | 0            | 1        | 11        | 9        | 40        |
| MAR3-008             | 3       | 23          | 0            | 1        | 20        | 9        | 40        |
| MAR3-009             | 2       | 25          | 0            | 1        | 20        | 9        | 30        |
| MAR3-010             | 3       | 25          | 1            | 1        | 20        | 9        | 40        |
| MAR3-011             | 3       | 40          | 0            | 1        | 20        | 9        | 40        |
| MAR3-012             | 3       | 23          | 0            | 1        | 20        | 9        | 54        |
| MAR3-013             | 3       | 25          | 0            | 1        | 20        | 9        | 40        |
| MAR3-014             | 3       | 25          | 1            | 1        | 20        | 9        | 40        |
| MAR3-015             | 3       | 21          | 0            | 1        | 20        | 9        | 40        |
| MAR3-016             | 3       | 20          | 1            | 1        | 20        | 9        | 40        |
| MAR3-017             | 3       | 25          | 1            | 1        | 20        | 9        | 40        |
| MAR3-018             | 3       | 25          | 1            | 1        | 20        | 9        | 40        |
| MAR3-019             | 3       | 12          | 0            | 1        | 20        | 9        | 40        |
| MAR3-020             | 3       | 23          | 0            | 1        | 20        | 9        | 40        |
| MAR3-021             | 3       | 23          | 0            | 1        | 20        | 9        | 40        |
| MAR3-022             | 3       | 25          | 0            | 1        | 20        | 9        | 40        |
| MAR3-023             | 3       | 23          | 0            | 1        | 20        | 9        | 40        |
| MAR3-024             | 3       | 40          | 1            | 1        | 20        | 9        | 40        |
| MAR3-025             | 3       | 20          | 0            | 1        | 41        | 9        | 40        |
| TOM1-003             | 3       | 25          | 0            | 1        | 41        | 9        | 40        |
| TOM1-004             | 3       | 23          | 1            | 1        | 20        | 9        | 40        |
| TOM1-005             | 3       | 42          | 1            | 1        | 20        | 9        | 40        |
| TOM1-007             | 3       | 42          | 0            | 1        | 20        | 9        | 40        |
| TOM1-008             | 3       | 41          | 0            | 1        | 41        | 9        | 40        |
| TOM1-014             | 3       | 25          | 0            | 1        | 20        | 9        | 40        |
| TOM1-016             | 3       | 20          | 1            | 1        | 10        | 9        | 40        |
| TOM1-017             | 3       | 25          | 1            | 1        | 20        | 9        | 40        |
| TOM1-018             | 3       | 42          | 0            | 1        | 20        | 9        | 40        |
| TOM1-019             | 3       | 23          | 0            | 1        | 10        | 9        | 40        |
| TOM1-020             | 3       | 21          | 0            | 1        | 20        | 9        | 40        |
| TOM1-021             | 3       | 23          | 0            | 1        | 10        | 9        | 40        |
| TOM1-022             | 3       | 12          | 0            | 1        | 20        | 9        | 54        |
| TOM1-023             | 3       | 42          | 0            | 1        | 20        | 9        | 40        |
| TOM1-024             | 3       | 23          | 0            | 1        | 20        | 9        | 20        |
| TOM1-025             | 3       | 12          | 0            | 1        | 10        | 9        | 20<br>50  |
| TOM1-026             | 3       | 23          | 0            | 1        | 20        | 9        | 40        |
| TOM1-020             | 3       | 12          | 0            | 1        | 20        | 9        | 40        |
| TOM1-027<br>TOM1-028 | 3       | 12          | 0            | 1        | 10        | 9        | 40        |
| TOM1-020<br>TOM1-029 | 3       | 23          | 1            | 1        | 20        | 9        | 40        |
| TOM1-02)<br>TOM1-030 | 3       | 25<br>25    | 0            | 1        | 10        | 9        | 40<br>50  |
| TOM1-030             | 3       | 20          | 0            | 1        | 10        | 9        | 40        |

|                      | N       | /latrix Attr | ibutes       | Silt Fr  | action    | Clay F   | raction   |
|----------------------|---------|--------------|--------------|----------|-----------|----------|-----------|
| Sample               | Opacity | Color        | Heterogenity | Dominant | Secondary | Dominant | Secondary |
| TOM1-032             | 3       | 23           | 0            | 1        | 10        | 9        | 30        |
| TOM1-034             | 3       | 25           | 0            | 1        | 20        | 9        | 40        |
| TOM1-036             | 3       | 25           | 0            | 1        | 20        | 9        | 40        |
| TOM1-038             | 3       | 41           | 0            | 1        | 20        | 9        | 40        |
| TOM1-040             | 3       | 23           | 0            | 1        | 20        | 9        | 53        |
| TOM1-041             | 3       | 40           | 1            | 1        | 20        | 9        | 43        |
| TOM1-042             | 3       | 42           | 0            | 1        | 20        | 9        | 40        |
| TOM1-043             | 3       | 25           | 0            | 1        | 20        | 9        | 40        |
| TOM1-044             | 3       | 25           | 0            | 1        | 20        | 9        | 40        |
| TOM1-045             | 3       | 23           | 0            | 1        | 20        | 9        | 40        |
| TOM1-046             | 3       | 20           | 0            | 1        | 20        | 9        | 40        |
| TOM1-047             | 3       | 42           | 0            | 1        | 20        | 9        | 30        |
| TOM1-048             | 3       | 41           | 0            | 1        | 20        | 9        | 40        |
| TOM1-049             | 3       | 23           | 0            | 1        | 40        | 9        | 40        |
| TOM1-049             | 3       | 23           | 0            | 1        | 10        | 9        | 40<br>40  |
| TOM1-050             | 3       | 23           | 0            | 1        | 20        | 9        | 40<br>40  |
| TOM1-051             | 3       | 20           | 0            | 1        | 20<br>10  | 9        | 40<br>40  |
| TOM1-052<br>TOM1-053 | 3       | 23           | 0            | 1        | 20        | 9        | 40<br>40  |
| TOM1-055<br>TOM1-054 | 3       | 23           | 0            | 1        | 20        | 9        | 40<br>40  |
| TOM1-004<br>TOM2-001 | 3       | 25<br>25     | 0            | 1        | 20        | 9        | 40<br>40  |
| TOM2-001<br>TOM2-002 | 3       | 40           |              | 1        | 20<br>20  | 9        | 40<br>40  |
| TOM2-002<br>TOM2-003 | 3       | 40<br>23     | 0<br>1       | 1        | 20<br>43  | 9        | 40<br>40  |
|                      |         |              |              |          |           |          |           |
| TOM2-004             | 3       | 20           | 1            | 1        | 20        | 9        | 40        |
| TOM2-005             | 3       | 12           | 0            | 1        | 20        | 9        | 50        |
| TOM2-006             | 3       | 25           | 0            | 1        | 20        | 9        | 40        |
| TOM2-007             | 3       | 23           | 0            | 1        | 20        | 9        | 40        |
| TOM2-008             | 3       | 40           | 0            | 1        | 11        | 9        | 40        |
| TOM2-009             | 3       | 42           | 1            | 1        | 20        | 9        | 40        |
| TOM2-010             | 3       | 23           | 0            | 1        | 10        | 9        | 40        |
| TOM2-011             | 3       | 40           | 1            | 1        | 11        | 9        | 40        |
| TOM2-012             | 3       | 20           | 0            | 1        | 20        | 9        | 40        |
| TOM2-013             | 3       | 40           | 1            | 1        | 10        | 9        | 40        |
| TOM2-014             | 3       | 12           | 3            | 1        | 20        | 9        | 40        |
| TOM2-015             | 3       | 21           | 0            | 1        | 20        | 9        | 40        |
| TOM2-017             | 3       | 42           | 1            | 1        | 20        | 9        | 40        |
| TOM2-019             | 3       | 42           | 1            | 1        | 20        | 9        | 40        |
| TOM2-020             | 3       | 23           | 0            | 1        | 20        | 9        | 40        |
| TOM2-021             | 3       | 25           | 0            | 1        | 20        | 9        | 40        |
| TOM2-022             | 3       | 20           | 0            | 1        | 20        | 9        | 40        |
| TOM2-023             | 3       | 25           | 1            | 1        | 20        | 9        | 40        |
| TOM2-025             | 3       | 25           | 0            | 1        | 20        | 9        | 40        |
| TOM2-026             | 3       | 42           | 1            | 1        | 20        | 9        | 40        |
| TOM2-027             | 3       | 42           | 0            | 1        | 20        | 9        | 40        |
| TOM2-028             | 3       | 25           | 1            | 1        | 11        | 9        | 40        |
| TOM2-029             | 3       | 42           | 0            | 1        | 20        | 9        | 40        |
| TOM2-030             | 3       | 42           | 0            | 1        | 20        | 9        | 43        |
| TOM2-031             | 3       | 25           | 0            | 1        | 11        | 9        | 40        |
| TOM2-032             | 3       | 23           | 0            | 1        | 30        | 9        | 40        |
| TOM2-033             | 3       | 20           | 1            | 1        | 10        | 9        | 40        |

### Table K.18a. Continued.

|          | Ν       | latrix Attr | ibutes       | Silt Fr  | raction   | Clay F   | raction   |
|----------|---------|-------------|--------------|----------|-----------|----------|-----------|
| Sample   | Opacity | Color       | Heterogenity | Dominant | Secondary | Dominant | Secondary |
| TOM2-034 | 3       | 19          | 0            | 1        | 40        | 9        | 40        |
| TOM2-035 | 3       | 20          | 0            | 1        | 10        | 9        | 50        |
| TOM2-036 | 3       | 23          | 0            | 1        | 10        | 9        | 40        |
| TOM2-037 | 3       | 42          | 1            | 1        | 20        | 9        | 40        |
| TOM2-038 | 3       | 40          | 0            | 1        | 41        | 9        | 40        |
| TOM2-039 | 3       | 40          | 0            | 1        | 20        | 9        | 43        |
| TOM2-040 | 3       | 25          | 0            | 1        | 11        | 9        | 40        |
| TOM2-041 | 3       | 20          | 1            | 1        | 43        | 9        | 40        |
| TOM2-042 | 3       | 21          | 0            | 1        | 11        | 9        | 40        |

#### Table K.18a. Continued.

petrographic results supported the binocular assignment for three of the groups (Table K.20). The characteristic volcanic inclusions seen in temper from the Twin Hills or Wasson petrofacies was usually identified correctly. However, most of the samples contained the "mixed" composition sand temper from the Wasson Petrofacies or the northern Tucson Mountains sand. This was clearly difficult to categorize, as would be expected for sands not previously known.

For the TOM1 samples, sixteen temper groups were examined through the thin sections. The temper in six groups was mostly correctly identified during the binocular analysis. This applied particularly to sherds with typical sand compositions from the Twin Hills and Central Tortolita petrofacies. Catalina Petrofacies sand was correctly recognized in one sample. Once again, the Wasson "mixed" composition sand was difficult to assign to a specific temper source.

The comparison between the binocular and petrographic assignments for the twelve TOM2 temper groups was problematic, as many of the groups had not been assigned a specific temper source. The typical Twin Hills Petrofacies sand was correctly identified. However, this group in particular had many of the unusual sand compositions.

When the fabric groups are combined from all three projects, it becomes apparent that in certain cases the temper was correctly identified (Table K.21). Unsurprisingly, the groups with temper that was easily identified were those with typical sands from the Twin Hills, Wasson, and Central Tortolita petrofacies. Therefore, sherds assigned a temper group of 4/1/J2, 4/41/E2, 4/47/E2, 4/53/J2, 4/54/J3, 6/53/J2, and 9.1/54/J3 are correct. However, for some of the temper groups only one sample was petrographically examined, so the likelihood that all sherds with a similar temper code contain the identified sand is not as high as for those temper groups in which multiple examples were subjected to pet-

rographic analysis. For other groups with an indeterminate specific source, they could still be assigned to one petrofacies and thus used to examine the corpus as a whole. Unfortunately, the presence of several unusual sand compositions, which caused problems in temper identification for all the analysts, precludes more of the ceramics with temper group assignments from being given a petrofacies designation.

For those samples that could be given a petrofacies assignment, some interesting results were attained (Table K.22). This was done only if the percentage of samples correctly identified during the binocular analysis was at or above 67 percent. Most of the plain ware sherds were tempered with sand from the Twin Hills Petrofacies to the south of the Yuma Wash site. This probably indicates a preference by the potters for a sand with unique, large inclusions that may have been technologically beneficial. Half of the Tucson Basin Red-on-brown ware sherds contained sand from the Wasson "mixed" composition source, while 35 percent had sand from the Twin Hills Petrofacies. This indicates substantial local production; however, there were vessels of this ware found at the site that had been produced in other parts of the Tucson Basin. The red ware sherds were derived from several petrofacies. Salado Polychrome sherds contained either the Wasson "mixed" composition or sand from the Twin Hills Petrofacies, indicating their local production and production just to the south of the site. The remaining wares were very rare, and only the dominance of Twin Hills sand in the Brown Corrugated types was notable, implying their production to the south of the Yuma Wash site.

#### DISCUSSION

A thorough examination of ethnographic literature has established that most potters will travel 3 **Table K.18.** Qualitative observations for analyzed samples, the Yuma Wash site. (Parameter definitions are given in Table K.16.)

|                      |                | Modal          | Modal        |        |          |      |         |          | Grain Types |          |
|----------------------|----------------|----------------|--------------|--------|----------|------|---------|----------|-------------|----------|
| Sample               | Temper<br>Type | Schist<br>Size | Sand<br>Size | Finest | Coarsest | Mode | Sorting | Dominant | Secondary   | Tertiary |
| MAR3-001             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 20          | 100      |
| MAR3-002             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 100      |
| MAR3-003             | 2              | 0              | 9            | 1      | 7        | 9    | 4       | 20       | 5           | 100      |
| MAR3-004             | 1              | 0              | 9            | 1      | 7        | 9    | 4       | 5        | 20          | 11       |
| MAR3-005             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 101      |
| MAR3-006             | 2              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| MAR3-007             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| MAR3-008             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| MAR3-009             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| MAR3-010             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| MAR3-011             | 2              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| MAR3-012             | 1              | 0              | 9            | 1      | 7        | 9    | 4       | 5        | 20          | 19       |
| MAR3-013             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| MAR3-014             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| MAR3-015             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| MAR3-016             | 1              | 0              | 9            | 1      | 9        | 9    | 5       | 5        | 21          | 11       |
| MAR3-017             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| MAR3-018             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| MAR3-019             | 1              | 0              | 9            | 1      | 6        | 9    | 5       | 5        | 21          | 11       |
| MAR3-020             | 1              | 0              | 9            | 1      | 7        | 9    | 4       | 5        | 20          | 11       |
| MAR3-021             | 1              | 0              | 9            | 1      | 7        | 9    | 4       | 5        | 20          | 11       |
| MAR3-022             | 2              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 20          | 11       |
| MAR3-023             | 1              | 0              | 9            | 1      | 7        | 9    | 4       | 5        | 20          | 11       |
| MAR3-024             | 5.1            | 9              | 9            | 1      | 7        | 9    | 5       | 5        | 20          | 11       |
| MAR3-025             | 7.1            | 9              | 9            | 1      | 7        | 9    | 4       | 5        | 41          | 20       |
| TOM1-003             | 5.1            | 0              | 9            | 1      | 7        | 9    | 9       | 5        | 21          | 41       |
| TOM1-004             | 1              | 0              | 9            | 1      | ,<br>7   | 9    | 4       | 1        | 21          | 11       |
| TOM1-005             | 1              | 0              | 9            | 1      | ,<br>7   | 9    | 4       | 1        | 21          | 11       |
| TOM1-005             | 1              | 0              | 9            | 1      | ,<br>7   | 9    | 9       | 5        | 21          | 30       |
| TOM1-007             | 1              | 0              | 9            | 1      | ,<br>7   | 9    | 9       | 5        | 41          | 21       |
| TOM1-000<br>TOM1-014 | 1              | 0              | 9            | 1      | ,<br>7   | 9    | 5       | 5        | 21          | 40       |
| TOM1-014<br>TOM1-016 | 1              | 0              | 9            | 1      | ,<br>7   | 9    | 4       | 1        | 21          | 115.05   |
| TOM1-010<br>TOM1-017 | 1              | 0              | 9            | 1      | ,<br>7   | 9    | 5       | 1        | 21          | 110.00   |
| TOM1-017<br>TOM1-018 | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| TOM1-010<br>TOM1-019 | 1              | 9              | 9            | 1      | 7        | 9    | 4       | 1        | 21          | 11       |
| TOM1-019<br>TOM1-020 | 5.1            | 0              | 9            | 1      | 7        | 9    | 4<br>5  | 5        | 21          | 11       |
| TOM1-020<br>TOM1-021 |                |                | 9            |        |          | 9    | 5       | 5        | 21<br>21    |          |
| TOM1-021<br>TOM1-022 | 1              | 0              |              | 1      | 7        | 9    | 5<br>5  | 5<br>5   | 21<br>21    | 11<br>11 |
|                      | 1              | 0              | 9            | 1      | 7        | 9    |         |          | 21<br>21    | 11<br>11 |
| TOM1-023             | 1              | 0<br>0         | 9<br>9       | 1      | 7<br>7   | 9    | 4<br>5  | 1<br>5   | 21<br>21    | 11<br>11 |
| TOM1-024             | 1              |                |              | 1      |          |      |         |          |             | 11<br>11 |
| TOM1-025             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5<br>E   | 21<br>21    | 11       |
| TOM1-026             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5<br>E   | 21          | 11<br>21 |
| TOM1-027             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5<br>F   | 11<br>21    | 21       |
| TOM1-028             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| TOM1-029             | 1              | 0              | 9            | 1      | 7        | 9    | 4       | 1        | 21          | 11       |
| TOM1-030             | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 11          | 21       |

**B.** Qualitative data for the sand-sized fraction.

#### Table K.18b. Continued.

|          | Temper | Modal<br>Schist | Modal<br>Sand |        |          |      |         | (        | Grain Types |          |
|----------|--------|-----------------|---------------|--------|----------|------|---------|----------|-------------|----------|
| Sample   | Туре   | Size            | Size          | Finest | Coarsest | Mode | Sorting | Dominant | Secondary   | Tertiary |
| TOM1-031 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 11          | 21       |
| TOM1-032 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| TOM1-034 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 30       |
| TOM1-036 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| TOM1-038 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| ГОМ1-040 | 1      | 0               | 9             | 1      | 6        | 9    | 5       | 5        | 21          | 11       |
| ГОМ1-041 | 1      | 0               | 9             | 1      | 6        | 9    | 4       | 1        | 21          | 11       |
| ГОМ1-042 | 1      | 0               | 9             | 1      | 7        | 9    | 9       | 5        | 21          | 11       |
| ГОМ1-043 | 5.1    | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 45       |
| ГОМ1-044 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 51       |
| ГОМ1-045 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 101.01   | 5           | 21       |
| OM1-046  | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 100      | 115.05      | 5        |
| OM1-047  | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 101.01   | 115.05      | 30       |
| OM1-048  | 5.1    | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 100      |
| TOM1-049 | 2      | 0               | 9             | 1      | 7        | 9    | 5       | 100      | 105         | 5        |
| TOM1-050 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 100      | 115.05      | 105      |
| OM1-051  | 2      | 0               | 9             | 1      | 7        | 9    | 5       | 100      | 115.05      | 105      |
| OM1-052  | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 100      | 115.05      | 5        |
| TOM1-053 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 115.05      | 21       |
| TOM1-054 | 1      | 0               | 9             | 1      | 7        | 9    | 9       | 5        | 21          | 100      |
| TOM2-001 | 1      | 0               | 9             | 1      | 7        | 9    | 9       | 5        | 21          | 43       |
| OM2-002  | 2      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 43       |
| ГОМ2-003 | 1      | 0               | 9             | 1      | 7        | 9    | 4       | 1        | 11          | 21       |
| TOM2-004 | 1      | 0               | 9             | 1      | 7        | 9    | 9       | 5        | 11          | 21       |
| ГОМ2-005 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| ГОМ2-006 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| ГОМ2-007 | 1      | 0               | 9             | 1      | 9        | 9    | 4       | 1        | 21          | 11       |
| ГОМ2-008 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 11          | 21       |
| ГОМ2-009 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 1        | 21          | 11       |
| ГОМ2-010 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 1        | 11          | 21       |
| ГОМ2-011 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 11          | 21       |
| OM2-012  | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 11          | 21       |
| ГОМ2-013 | 1      | 0               | 9             | 1      | 7        | 9    | 4       | 1        | 11          | 21       |
| ГОМ2-014 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| TOM2-015 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 11          | 21       |
| ГОМ2-017 | 1      | 0               | 0             | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| ГОМ2-019 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| ГОМ2-020 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 101.02      | 21       |
| ГОМ2-021 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 115.05   |
| ГОМ2-022 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 115.05   |
| ГОМ2-023 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| TOM2-025 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 21          | 11       |
| TOM2-026 | 1      | 0               | 9             | 1      | 7        | 9    | 4       | 1        | 21          | 11       |
| OM2-027  | 1      | 0               | 9             | 1      | 7        | 9    | 4       | 1        | 21          | 11       |
| TOM2-028 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 11          | 21       |
| ГОМ2-029 | 1      | 0               | 9             | 1      | 7        | 9    | 4       | 1        | 11          | 21       |
| ГОМ2-030 | 1      | 0               | 9             | 1      | 7        | 9    | 4       | 1        | 21          | 11       |
| OM2-031  | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 11          | 21       |
| ГОМ2-032 | 1      | 0               | 9             | 1      | 7        | 9    | 5       | 5        | 11          | 21       |

|          | T              | Modal          | Modal        |        |          |      |         |          | Grain Types |          |
|----------|----------------|----------------|--------------|--------|----------|------|---------|----------|-------------|----------|
| Sample   | Temper<br>Type | Schist<br>Size | Sand<br>Size | Finest | Coarsest | Mode | Sorting | Dominant | Secondary   | Tertiary |
| I        | турс           |                |              | These  |          |      | Ũ       |          | 2           | 5        |
| TOM2-033 | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 11          | 21       |
| TOM2-034 | 2              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 11          | 21       |
| TOM2-035 | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 11          | 21       |
| TOM2-036 | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 11          | 21       |
| TOM2-037 | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 11          | 21       |
| TOM2-038 | 5.1            | 9              | 5            | 1      | 7        | 9    | 5       | 5        | 41          | 21       |
| TOM2-039 | 1              | 0              | 9            | 1      | 7        | 9    | 4       | 1        | 21          | 11       |
| TOM2-040 | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 1        | 21          | 11       |
| TOM2-041 | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 43          | 21       |
| TOM2-042 | 1              | 0              | 9            | 1      | 7        | 9    | 5       | 5        | 11          | 40       |

Table K.18b. Continued.

km or less to collect sand temper (Heidke 2009:Table 4.10). Based on this, pottery tempered with sand resources found within 3 km of the Yuma Wash site are considered "local" productions. The site is located on the northeastern edge of the Wasson Petrofacies along the Santa Cruz River (Figure K.4). Within 3 km of the site is the Rillito Petrofacies to the north that would have provided "local" sand resources. In addition, across the Santa Cruz River, the edge of the Eastern Tortolita Petrofacies would also be considered "local." Pottery tempered with sand compositions found outside of these areas are considered "nonlocal" vessels.

The unusual "mixed" composition sand is believed to be local to the Yuma Wash site, which sits on an active alluvial terrace receiving slope wash from the Tucson Mountains. Volcanic rock fragments would be rounded and of medium size by the time they were deposited near the site. Furthermore, the Santa Cruz River, located next to the site, would have occasionally flooded, depositing sediments from other areas of the Tucson Basin. In fact, the most recent contribution to the Santa Cruz River would have been from the Cañada del Oro, which would have carried granites and gneiss fragments, along with prevalent mica and mafic minerals, from the Tortolita Mountains. Our working hypothesis is that the "mixed" composition represents a combination of the Tucson Mountain slope wash at the site and flood deposits from the Santa Cruz River. Such materials may have derived from natural cuts in the alluvial fan or possibly agricultural canals. As there is evidence for these canals crossing the eastern edge of the piedmont on which the Yuma Wash site sits, the latter suggestion is a distinct possibility (Huckleberry 2005; also, Chapter 2). Sediments in the excavated canals included silty clay and fine-sized sand ideal for pottery production. At the site of Las Colinas, a settling basin appears to have

been filled with canal water, and after the water evaporated, the resulting clay was used to manufacture pottery (based on non-destructive XRF analyses of sediments and pottery; Crown et al. 1988). A pottery producing area was located near canals at the Sweetwater site, also in the Phoenix Basin, and may have provided raw materials (Woodson 2011:135-139). This raises the possibility that canal sediments were utilized to produce ceramics at prehistoric sites. Therefore, we purpose that the "mixed" composition seen in many of the sherds represents unique locally available sand, possibly deriving from agricultural canals.

In light of this, most of the petrographically analyzed samples were locally produced (Table K.23). The Wasson "mixed" composition sand was noted for 34 plain ware and Tanque Verde Red-on-brown bowls and jars (including one Late Rincon or Tanque Verde sample and one indeterminate red-on-brown jar). Unmixed Wasson Petrofacies sand was used for five plain ware jars, one plain ware of indeterminate form, one Tanque Verde Red-on-brown bowl, one Late Rincon or Tanque Verde jar, and one Middle Rincon, Late Rincon, or Tanque Verde jar. This sand was also used in a Gila Polychrome bowl and an indeterminate Classic red ware bowl. Two plain ware jars, two Tanque Verde Red-on-brown bowls and one jar, one Tanque Verde Red-on-brown of indeterminate form, and one Late Rincon or Tangue Verde Red-on-brown of indeterminate form were produced with sand from the Eastern Tortolita Petrofacies, across the Santa Cruz River from the site. One Tangue Verde Red-on-brown bowl and one jar, one Middle Rincon, Late Rincon, or Tanque Verde Red-on-brown jar, and an indeterminate red ware bowl also had sand from the Tortolita Petrofacies, but with many volcanic rock fragments. This sand could potentially have derived from within the 3 km area defined as local for the Yuma Wash site.

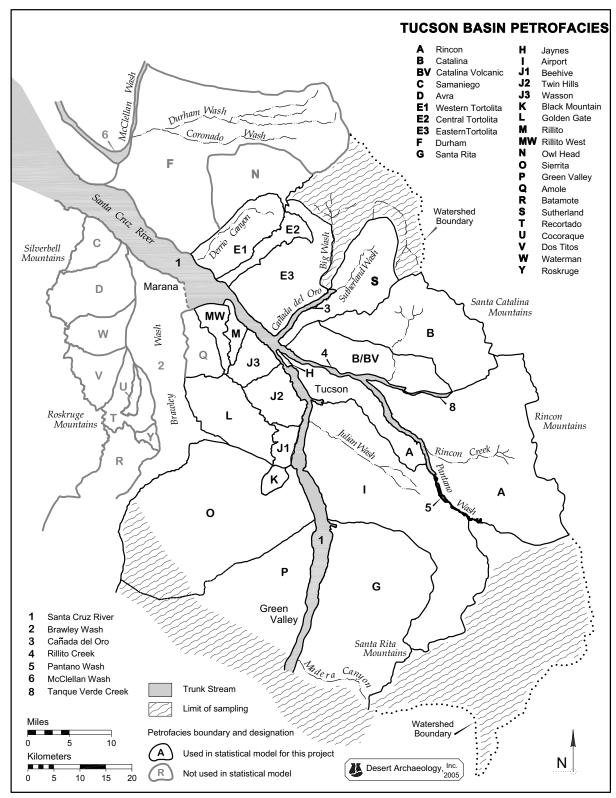



Figure K.2. Tucson Basin Petrofacies, 2010 model.

Unfortunately, modern disturbance makes acquiring a sample in this area to test this hypothesis virtually impossible. Pottery not produced locally derived from several petrofacies. Sand from the Twin Hills Petrofacies to the south of the site was used to produce six

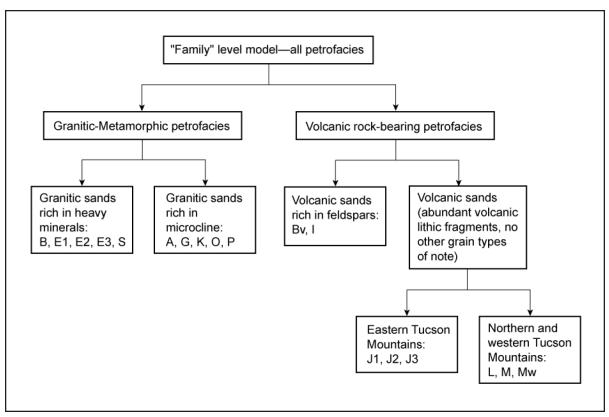



Figure K.3. Diagram of steps in discriminant model classification

plain ware jars and one bowl, ten Tanque Verde Redon-brown bowls and jars (including two Middle Rincon, Late Rincon, or Tanque Verde jars), and the two Brown Corrugated jar samples. The Stucco Plain ware jar was also made with this sand. Nine Tanque Verde Red-on-brown bowls and one Late Rincon or Tanque Verde Red-on-brown of indeterminate form were produced from a volcanic sand that probably derives from an area in the northern Tucson Mountains, north of the Yuma Wash site. A single Late Rincon or Tanque Verde Red-on-brown sherd of indeterminate vessel form was tempered with sand from the Beehive Petrofacies. Samples with Black Mountain Petrofacies sand were more common and included seven Tangue Verde Red-on-brown bowls and jars, and one Late Rincon or Tanque Verde Redon-brown bowl. One plain ware jar was produced with sand from the Big Wash Petrofacies adjacent to the Eastern Tortolita Petrofacies. One plain ware jar and one Tortolita Red ware jar were made with Central Tortolita Petrofacies sand. Sand from the Catalina Petrofacies was found in one Tanque Verde Red-on-brown sherd and one Middle Rincon, Late Rincon, or Tanque Verde Red-on-brown sherd, both of indeterminate form.

A Mogollon Brown ware bowl sample was produced with sand that did not match any in the Tucson Basin, suggesting its likely import to the Yuma Wash site from outside the basin. An indeterminate polychrome bowl was also made with an unusual sand that could derive from a location beyond the Tucson Basin.

Three plain ware jars were tempered with crushed schist and thus a petrofacies could not be assigned. Sherds with grog temper containing crushed schist appear to have been uniformly tempered with Wasson Petrofacies sand.

The results of the petrographic analysis of ceramics from several other Classic period sites are worth mentioning in comparison to those from the current study of Yuma Wash site pottery (Figure K.5). Analysis of pottery from the Rillito Fan site, AZ AA:12:788 (ASM), has been conducted on two occasions, with material deriving from Desert Archaeology excavations and from those recently conducted by Northland Research, Inc. During the latter study, it was discovered that most of the pottery was not produced from the local Jaynes (H) Petrofacies sand (Ownby et al. 2010). On the contrary, sand from the Twin Hills Petrofacies was used to manufacture the majority of the plain and decorated wares. Although the northeastern section of this petrofacies is within 3 km of the Rillito Fan site, it is not certain whether potters from the Rillito Fan site would have crossed the Santa Cruz River to exploit this resource or if pottery made at a site within the Twin Hills Petro-

|                 |                                               | Temper | Compositi                 | Temper Composition Assigned |                                          | Petrofacies                        |                                           |
|-----------------|-----------------------------------------------|--------|---------------------------|-----------------------------|------------------------------------------|------------------------------------|-------------------------------------------|
|                 |                                               | during | during Binocular Analysis | Analysis                    | Petrofacies                              | Assigned by                        |                                           |
| Sample          | Ware                                          | TT     | TSG                       | TSSa                        | Assigned by<br>Petrographer <sup>a</sup> | Discriminant<br>Model <sup>a</sup> | Final Petrofacies Assignment <sup>a</sup> |
| MAR3-001        | Tanque Verde Red-on-brown                     | 4      | 53                        | 6-                          | J3                                       | J1                                 | J3                                        |
| MAR3-002        | Plain ware                                    | 4      | 53                        | J2                          | J2                                       | J2                                 | ]2                                        |
| MAR3-003        | Late Rincon or Tanque Verde red-on-brown      | 9.1    | 54                        | 6-                          | Μ                                        | J1                                 | J1                                        |
| MAR3-004        | Plain ware                                    | 9.1    | 54                        | J3                          | J3                                       | L                                  | J3                                        |
| MAR3-005        | Middle or Late Rincon or Tanque Verde red-on- | 4      | 54                        | J3                          | J3                                       | J3                                 | J3                                        |
|                 | brown                                         |        |                           |                             |                                          |                                    |                                           |
| <b>MAR3-006</b> | Plain ware                                    | 4      | 2                         | -9                          | ]2                                       | М                                  | ]2                                        |
| MAR3-007        | Indeterminate red-on-brown                    | 4      | 2                         | -9                          | ]2                                       | М                                  | J3, mix                                   |
| <b>MAR3-008</b> | Tanque Verde Red-on-brown                     | 4      | 2                         | 0                           | J3                                       | М                                  | J3, mix                                   |
| MAR3-009        | Indeterminate Mogollon Corrugated             | 4      | 2                         | 0                           | Unknown                                  | E3                                 | Extrabasinal                              |
| MAR3-010        | Plain ware                                    | 9      | 2                         | 0                           | J3                                       | Μ                                  | J3, mix                                   |
| MAR3-011        | Tanque Verde Red-on-brown                     | 4      | 7                         | 0                           | ]2                                       | Μ                                  | J3, mix                                   |
| MAR3-012        | Plain ware                                    | 4      | 42                        | E3                          | E1                                       | E3                                 | Z                                         |
| MAR3-013        | Tanque Verde Red-on-brown                     | 4      | 42                        | E3                          | Unknown                                  | Μ                                  | North Tucson Mountains                    |
| MAR3-014        | Tanque Verde Red-on-brown                     | 4      | 42                        | E3                          | Μ                                        | Μ                                  | J3, mix                                   |
| MAR3-015        | Tanque Verde Red-on-brown                     | 4      | 42                        | E3                          | Unknown                                  | ј1                                 | J3, mix                                   |
| MAR3-016        | Tanque Verde Red-on-brown                     | 4      | 7                         | 6-                          | J2                                       | J2                                 | J3, mix                                   |
| MAR3-017        | Late Rincon or Tanque Verde red-on-brown      | 4      | 7                         | -9                          | J3                                       | ]3                                 | J3                                        |
| MAR3-018        | Tanque Verde Red-on-brown                     | 4      | 30                        | -9                          | J3                                       | Μ                                  | J3, mix                                   |
| MAR3-019        | Late Rincon or Tanque Verde red-on-brown      | 4      | 30                        | -9                          | К                                        | ]2                                 | North Tucson Mountains                    |
| MAR3-020        | Tanque Verde Red-on-brown                     | 4      | 30                        | -9                          | J3                                       | L                                  | North Tucson Mountains                    |
| MAR3-021        | Tanque Verde Red-on-brown                     | 4      | 30                        | Х                           | Bv                                       | К                                  | North Tucson Mountains                    |
| MAR3-022        | Plain ware                                    | 9      | С                         | -9                          | J3                                       | Μ                                  | J3                                        |
| MAR3-023        | Plain ware                                    | 6      | ю                         | -9                          | E3                                       | E2                                 | E3                                        |
| MAR3-024        | Plain ware                                    | 7      | ŋ                         | 6-                          | K                                        | М                                  | J3, mix                                   |
| MAR3-025        | Plain ware                                    | 7      | Ŋ                         | -9                          | Unknown                                  | В                                  | Crushed schist                            |
| TOM1-003        | Plain ware                                    | ß      | 6-                        | -9                          | ]2                                       | Μ                                  | J3 plus grog with crushed schist          |
| TOM1-004        | Tanque Verde Red-on-brown                     | 4      | 6-                        | -9                          | ]2                                       | U                                  | J3, mix                                   |
| TOM1-005        | Tanque Verde Red-on-brown                     | 4      | 6-                        | -9                          | Unknown                                  | J2                                 | J3, mix                                   |
| TOM1-007        | Tanque Verde Red-on-brown                     | 4      | 6-                        | -9                          | E3                                       | J1                                 | North Tucson Mountains                    |
| TOM1-008        | Plain ware                                    | IJ     | 6-                        | 6-                          | Unknown                                  | А                                  | Crushed schist                            |

Table K.19. Final results after petrographic and discriminant model analysis, the Yuma Wash site.

|          |                                                        | Temper<br>during E | Temper Composition Assi,<br>during Binocular Analysis | Temper Composition Assigned<br>during Binocular Analysis | Petrofacies                              | Petrofacies<br>Assigned by         |                                           |
|----------|--------------------------------------------------------|--------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------------------------|------------------------------------|-------------------------------------------|
| Sample   | Ware                                                   | ΤΤ                 | TSG                                                   | $\mathrm{TSS}^{\mathrm{a}}$                              | Assigned by<br>Petrographer <sup>a</sup> | Discriminant<br>Model <sup>a</sup> | Final Petrofacies Assignment <sup>a</sup> |
| TOM1-014 | Stucco Plain ware                                      | 4                  | 1                                                     | 6-                                                       | J2                                       | ]2                                 | J2                                        |
| TOM1-016 | Middle or Late Rincon or Tanque Verde red-on-<br>brown | 4                  |                                                       | J2                                                       | ]2                                       | ]2                                 | ]2                                        |
| TOM1-017 | Tanque Verde Red-on-brown                              | 4                  | 7                                                     | 6-                                                       | E1                                       | ]3                                 | E with volcanics                          |
| TOM1-018 | Plain ware                                             | 4                  | 7                                                     | 6-                                                       | E1                                       | Ĕ3                                 | E3                                        |
| TOM1-019 | Tanque Verde Red-on-brown                              | 4                  | З                                                     | 6-                                                       | В                                        | В                                  | B                                         |
| TOM1-020 | Middle or Late Rincon or Tanque Verde red-on-<br>brown | 4                  | С                                                     | В                                                        | В                                        | В                                  | В                                         |
| TOM1-021 | Tanque Verde Red-on-brown                              | 4                  | 30                                                    | 6-                                                       | K                                        | IJ                                 | J3, mix                                   |
| TOM1-022 | Late Rincon or Tanque Verde red-on-brown               | 4                  | 30                                                    | 6-                                                       | K                                        | М                                  | J3, mix                                   |
| TOM1-023 | Tanque Verde Red-on-brown                              | 4                  | 30                                                    | 6-                                                       | K                                        | Μ                                  | J3, mix                                   |
| TOM1-024 | Tanque Verde Red-on-brown                              | 4                  | 30                                                    | K                                                        | E1                                       | E3                                 | E3                                        |
| TOM1-025 | Tanque Verde Red-on-brown                              | 4                  | 30                                                    | K                                                        | K                                        | IJ                                 | J3, mix                                   |
| TOM1-026 | Tanque Verde Red-on-brown                              | 4                  | 30                                                    | Х                                                        | K                                        | J3                                 | North Tucson Mountains                    |
| TOM1-027 | Tanque Verde Red-on-brown                              | 4                  | 30                                                    | Х                                                        | K                                        | K                                  | J3, mix                                   |
| TOM1-028 | Tanque Verde Red-on-brown                              | 4                  | 30                                                    | K                                                        | K                                        | J2                                 | K                                         |
| TOM1-029 | Tanque Verde Red-on-brown                              | 4                  | 30                                                    | K                                                        | K                                        | Μ                                  | J3, mix                                   |
| TOM1-030 | Tanque Verde Red-on-brown                              | 4                  | 30                                                    | Х                                                        | K                                        | J2                                 | J2                                        |
| TOM1-031 | Tanque Verde Red-on-brown                              | 4                  | 30                                                    | Х                                                        | K                                        | G                                  | J3, mix                                   |
| TOM1-032 | Late Rincon or Tanque Verde red-on-brown               | 4                  | 30                                                    | Х                                                        | K                                        | К                                  | Κ                                         |
| TOM1-034 | Plain ware                                             | 4                  | 40                                                    | 6-                                                       | Bv                                       | Μ                                  | J3, mix                                   |
| TOM1-036 | Plain ware                                             | 4                  | 40                                                    | -9                                                       | В                                        | М                                  | J3, mix                                   |
| TOM1-038 | Late Rincon or Tanque Verde red-on-brown               | 4                  | 40                                                    | -9                                                       | E1                                       | E3                                 | E3                                        |
| TOM1-040 | Tortolita Red                                          | 4                  | 41                                                    | E2                                                       | E2                                       | E3                                 | E2                                        |
| TOM1-041 | Tanque Verde Red-on-brown                              | 4                  | 45                                                    | -9                                                       | E1                                       | E3                                 | E3                                        |
| TOM1-042 | Tanque Verde Red-on-brown                              | 4                  | 45                                                    | -9                                                       | ]2                                       | G                                  | J3, mix                                   |
| TOM1-043 | Indeterminate polychrome                               | 4                  | 40                                                    | S                                                        | E3                                       | S                                  | Unknown                                   |
| TOM1-044 | Plain ware                                             | 4                  | 47                                                    | E2                                                       | E2                                       | E2                                 | E2                                        |
| TOM1-045 | Tanque Verde Red-on-brown                              | 4                  | 53                                                    | J2                                                       | ]2                                       | J3                                 | J2                                        |
| TOM1-046 | Tanque Verde Red-on-brown                              | 4                  | 53                                                    | ]2                                                       | J2                                       | J2                                 | J2                                        |
| TOM1-047 | Plain ware                                             | 4                  | 53                                                    | ]2                                                       | J2                                       | J2                                 | J2                                        |
| TOM1-048 | Plain ware                                             | 6                  | 53                                                    | J2                                                       | J2                                       | J2                                 | J2                                        |

Table K.19. Continued.

|          |                                               | Temper<br>during | Temper Composition Assi<br>during Binocular Analysis | Temper Composition Assigned<br>during Binocular Analysis | Petrofacies                              | Petrofacies<br>Assigned by         |                                           |
|----------|-----------------------------------------------|------------------|------------------------------------------------------|----------------------------------------------------------|------------------------------------------|------------------------------------|-------------------------------------------|
| Sample   | Ware                                          | TT               | TSG                                                  | TSSa                                                     | Assigned by<br>Petrographer <sup>a</sup> | Discriminant<br>Model <sup>a</sup> | Final Petrofacies Assignment <sup>a</sup> |
| TOM1-049 | Plain ware                                    | 4                | 53                                                   | J2                                                       | J2                                       | J2                                 | J3                                        |
| TOM1-050 | Tanque Verde Red-on-brown                     | 4                | 53                                                   | J2                                                       | J2                                       | ]2                                 | ]2                                        |
| TOM1-051 | Plain ware                                    | 4                | 53                                                   | J2                                                       | J2                                       | J2                                 | ]2                                        |
| TOM1-052 | Middle or Late Rincon or Tanque Verde red-on- | 4                | 53                                                   | J2                                                       | J2                                       | J2                                 | ]2                                        |
|          | brown                                         |                  |                                                      |                                                          |                                          |                                    |                                           |
| TOM1-053 | Flattened Brown Corrugated                    | 4                | 53                                                   | J2                                                       | J2                                       | J2                                 | ]2                                        |
| TOM1-054 | Clapboard Brown Corrugated                    | 4                | 53                                                   | J2                                                       | ]2                                       | ]2                                 | ]2                                        |
| TOM2-001 | Gila Polychrome                               | 4                | 6-                                                   | 6-                                                       | J2                                       | ]2                                 | J3                                        |
| TOM2-002 | Indeterminate Classic red                     | 6                | 6-                                                   | 6-                                                       | ]2                                       | J2                                 | J3 plus grog with crushed schist          |
| TOM2-003 | Middle or Late Rincon or Tanque Verde red-on- | 4                | 6-                                                   | 6-                                                       | К                                        | E3                                 | E with volcanics                          |
|          | brown                                         |                  |                                                      |                                                          |                                          |                                    |                                           |
| TOM2-004 | Tanque Verde Red-on-brown                     | 4                | 6-                                                   | 6-                                                       | E1                                       | E3                                 | E with volcanics                          |
| TOM2-005 | Tanque Verde Red-on-brown                     | 4                | 6-                                                   | 6-                                                       | K                                        | Μ                                  | К                                         |
| TOM2-006 | Tanque Verde Red-on-brown                     | 4                | 6-                                                   | 6-                                                       | E1                                       | E3                                 | E3                                        |
| TOM2-007 | Tanque Verde Red-on-brown                     | 4                | 6-                                                   | 6-                                                       | К                                        | Bv                                 | J3, mix                                   |
| TOM2-008 | Tanque Verde Red-on-brown                     | 4                | 6-                                                   | 6-                                                       | ]2                                       | Μ                                  | J3, mix                                   |
| TOM2-009 | Tanque Verde Red-on-brown                     | 4                | 6-                                                   | 6-                                                       | J2                                       | J2                                 | ]2                                        |
| TOM2-010 | Tanque Verde Red-on-brown                     | 4                | 6-                                                   | 6-                                                       | К                                        | E3                                 | J3, mix                                   |
| TOM2-011 | Tanque Verde Red-on-brown                     | 4                | 6-                                                   | 6-                                                       | J2                                       | Μ                                  | J3, mix                                   |
| TOM2-012 | Tanque Verde Red-on-brown                     | 4                | 6-                                                   | 6-                                                       | К                                        | К                                  | К                                         |
| TOM2-013 | Tanque Verde Red-on-brown                     | 4                | 6-                                                   | 6-                                                       | К                                        | J1                                 | К                                         |
| TOM2-014 | Tanque Verde Red-on-brown                     | 4                | 6-                                                   | 6-                                                       | К                                        | 0                                  | К                                         |
| TOM2-015 | Plain ware                                    | 9                | 40                                                   | 6-                                                       | К                                        | J2                                 | ]2                                        |
| TOM2-017 | Plain ware                                    | 4                | 6-                                                   | 6-                                                       | К                                        | J2                                 | J3                                        |
| TOM2-019 | Tanque Verde Red-on-brown                     | 4                | 1                                                    | J1                                                       | К                                        | М                                  | North Tucson Mountains                    |
| TOM2-020 | Tanque Verde Red-on-brown                     | 4                | 1                                                    | 6-                                                       | J2                                       | J2                                 | ]2                                        |
| TOM2-021 | Plain ware                                    | 4                | 1                                                    | 6-                                                       | J2                                       | <u>]</u> 2                         | J3                                        |
| TOM2-022 | Tanque Verde Red-on-brown                     | 4                | 1                                                    | J2                                                       | J2                                       | J2                                 | ]2                                        |
| TOM2-023 | Plain ware                                    | 4                | 2                                                    | 6-                                                       | К                                        | Μ                                  | J3, mix                                   |
| TOM2-025 | Tanque Verde Red-on-brown                     | 4                | 2                                                    | 6-                                                       | E1                                       | E3                                 | E3                                        |
| TOM2-026 | Tanque Verde Red-on-brown                     | 4                | 2                                                    | 6-                                                       | К                                        | J3                                 | K                                         |
| TOM2-027 | Tanque Verde Red-on-brown                     | 4                | 7                                                    | 6-                                                       | К                                        | J3                                 | North Tucson Mountains                    |

46 Binocular and Petrographic Analysis of Pottery from Yuma Wash

Table K.19. Continued.

|                                         |                                                                                                                                                  | Temper                    | Compositic                  | Temper Composition Assigned     |                                           | Petrofacies                               |                                                                                                                                                                                                                                                |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|---------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                                                                                                                                                  | during l                  | during Binocular Analysis   | nalysis                         | Petrofacies                               | Assigned by                               |                                                                                                                                                                                                                                                |
|                                         |                                                                                                                                                  |                           |                             |                                 | Assigned by                               | Discriminant                              |                                                                                                                                                                                                                                                |
| Sample                                  | Ware                                                                                                                                             | ΤΤ                        | TSG                         | $TSS^{a}$                       | Petrographer <sup>a</sup>                 | Model <sup>a</sup>                        | Final Petrofacies Assignment <sup>a</sup>                                                                                                                                                                                                      |
| TOM2-028                                | Tanque Verde Red-on-brown                                                                                                                        | 4                         | 2                           | 6-                              | J2                                        | М                                         | J3, mix                                                                                                                                                                                                                                        |
| TOM2-029                                | Tanque Verde Red-on-brown                                                                                                                        | 4                         | 7                           | -6                              | K                                         | Μ                                         | J3, mix                                                                                                                                                                                                                                        |
| TOM2-030                                | Tanque Verde Red-on-brown                                                                                                                        | 4                         | 7                           | -6                              | K                                         | K                                         | North Tucson Mountains                                                                                                                                                                                                                         |
| TOM2-031                                | Indeterminate red ware                                                                                                                           | 4                         | 7                           | -6                              | K                                         | BW                                        | E with volcs                                                                                                                                                                                                                                   |
| TOM2-032                                | Tanque Verde Red-on-brown                                                                                                                        | 4                         | 30                          | 6-                              | К                                         | К                                         | J3, mix                                                                                                                                                                                                                                        |
| TOM2-033                                | Tanque Verde Red-on-brown                                                                                                                        | 4                         | 30                          | 6-                              | K                                         | IJ                                        | J3, mix                                                                                                                                                                                                                                        |
| TOM2-034                                | Tanque Verde Red-on-brown                                                                                                                        | 4                         | 30                          | 6-                              | K                                         | ]2                                        | K                                                                                                                                                                                                                                              |
| TOM2-035                                | Tanque Verde Red-on-brown                                                                                                                        | 4                         | 30                          | 6-                              | K                                         | K                                         | J3, mix                                                                                                                                                                                                                                        |
| TOM2-036                                | Tanque Verde Red-on-brown                                                                                                                        | 4                         | 30                          | -6                              | K                                         | М                                         | J3, mix                                                                                                                                                                                                                                        |
| TOM2-037                                | Tanque Verde Red-on-brown                                                                                                                        | 4                         | 40                          | 6-                              | ]2                                        | Μ                                         | J3, mix                                                                                                                                                                                                                                        |
| TOM2-038                                | Plain ware                                                                                                                                       | 6                         | 40                          | 6-                              | Unknown                                   | В                                         | Crushed schist                                                                                                                                                                                                                                 |
| TOM2-039                                | Tanque Verde Red-on-brown                                                                                                                        | 4                         | 45                          | 6-                              | K                                         | ]2                                        | North Tucson Mountains                                                                                                                                                                                                                         |
| TOM2-040                                | Tanque Verde Red-on-brown                                                                                                                        | 4                         | 45                          | 6-                              | ]2                                        | Μ                                         | J3, mix                                                                                                                                                                                                                                        |
| TOM2-041                                | Plain ware                                                                                                                                       | 9                         | 2                           | 6-                              | ]2                                        | ]2                                        | ]2                                                                                                                                                                                                                                             |
| TOM2-042                                | Tanque Verde Red-on-brown                                                                                                                        | 6                         | 6-                          | -6                              | J2                                        | J2                                        | J2                                                                                                                                                                                                                                             |
| <sup>a</sup> A = Rincor<br>Tortolita Pe | <sup>a</sup> A = Rincon Petrofacies, B = Catalina Petrofacies, Bv = Catalii<br>Tortolita Petrofacies, G = Santa Rita Petrofacies, 11 = Beehive I | na Volcani<br>Petrofacies | c Petrofacie<br>, 12 = Twin | s, E1 = Weste<br>Hills Petrofac | ern Tortolita Petro<br>ies, I3 = Wasson I | ofacies, E2 = Cent<br>Petrofacies, K = Bl | = Catalina Volcanic Petrofacies, E1 = Western Tortolita Petrofacies, E2 = Central Tortolita Petrofacies, E3 = Eastern<br>Beehive Petrofacies, 12 = Twin Hills Petrofacies, 13 = Wasson Petrofacies, K = Black Mountain Petrofacies, L = Golden |

Table K.19. Continued.

5 Gate Petrofacies, M = Rillito Petrofacies, O = Sierrita Petrofacies, S = Sutherland Petrofacies, Z = Big Wash Petrofacies.

## Binocular and Petrographic Analysis of Pottery from Yuma Wash 47

| Project | Temper<br>Group | Total No.<br>of Samples | Total No.<br>Correct | Petrographic Assignment <sup>a</sup>                                                               |
|---------|-----------------|-------------------------|----------------------|----------------------------------------------------------------------------------------------------|
| MAR3    | 4/2/-9          | 2                       | _                    | One J2 sand, the other local mixed composition                                                     |
|         | 4/2/0           | 3                       | 0                    | Local mixed composition, plus one extrabasinal sample                                              |
|         | 4/7/-9          | 2                       | _                    | One J3 sand, the other local mixed composition                                                     |
|         | 4/30/-9         | 3                       | _                    | Two with north Tucson Mountains, one with local mixed composition                                  |
|         | 4/30/K          | 1                       | 0                    | Sand from north Tucson Mountains                                                                   |
|         | 4/42/E3         | 4                       | 0                    | Two with local mixed composition, one with north Tucson Mountains, and one with Z sand             |
|         | 4/53/-9         | 1                       | _                    | Local unmixed composition (J3)                                                                     |
|         | 4/53/J2         | 1                       | 1                    | J2 sand                                                                                            |
|         | 4/54/J3         | 1                       | 1                    | Local unmixed composition (J3)                                                                     |
|         | 6/2/O           | 1                       | 0                    | Local mixed composition                                                                            |
|         | 6/3/-9          | 2                       | _                    | One with J3 sand, the other with E3 sand                                                           |
|         | 7/5/-9          | 2                       | 1                    | One with added crushed rock, the other local mixed composition                                     |
|         | 9.1/54/-9       | 1                       | _                    | J1 sand                                                                                            |
|         | 9.1/54/J3       | 1                       | 1                    | Local unmixed composition (J3)                                                                     |
| TOM1    | 4/-9/-9         | 3                       | _                    | Two with local mixed composition, one with north Tucson Mountains                                  |
|         | 4/1/-9          | 1                       | _                    | J2 sand                                                                                            |
|         | 4/1/J2          | 1                       | 1                    | J2 sand                                                                                            |
|         | 4/2/-9          | 2                       | _                    | One with E3 sand, one with E sand with volcanics                                                   |
|         | 4/3/-9          | 1                       | _                    | B sand                                                                                             |
|         | 4/3/B           | 1                       | 1                    | B sand                                                                                             |
|         | 4/30/-9         | 3                       | _                    | Local mixed composition                                                                            |
|         | 4/30/K          | 9                       | 2                    | Sands from K, J2, E3, local mixed composition and north Tucson<br>Mountains                        |
|         | 4/40/-9         | 3                       | -                    | Two local mixed composition, one E3 sand                                                           |
|         | 4/40/S          | 1                       | 0                    | Unknown, possibly extrabasinal                                                                     |
|         | 4/41/E2         | 1                       | 1                    | E2 sand                                                                                            |
|         | 4/45/-9         | 2                       | _                    | One with local mixed composition, one with E3 sand                                                 |
|         | 4/47/E2         | 1                       | 1                    | E2 sand                                                                                            |
|         | 4/53/J2         | 9                       | 8                    | J2 sand, one is a local unmixed composition (J3)                                                   |
|         | 5/-9/-9         | 2                       | _                    | One with crushed schist, one with grog containing crushed schist                                   |
|         | 6/53/J2         | 1                       | 1                    | J2 sand                                                                                            |
| TOM2    | 4/-9/-9         | 14                      | -                    | Sands from K, E3, E with volcanics, J2, local unmixed composition (J3) and local mixed composition |
|         | 4/1/-9          | 2                       | -                    | One J2 sand, one J3 sand                                                                           |
|         | 4/1/J1          | 1                       | 0                    | Sand from north Tucson Mountains                                                                   |
|         | 4/1/J2          | 1                       | 1                    | J2 sand                                                                                            |
|         | 4/2/-9          | 8                       | -                    | Sands from K, E3, E with volcanics, local mixed composition, and north Tucson Mountains            |
|         | 4/30/-9         | 5                       | -                    | Local mixed composition, plus one K sand                                                           |
|         | 4/40/-9         | 1                       | -                    | Local mixed composition                                                                            |
|         | 4/45/-9         | 2                       | -                    | Local mixed composition and north Tucson Mountains                                                 |
|         | 6/-9/-9         | 1                       | -                    | Grog with crushed schist                                                                           |
|         | 6/40/-9         | 2                       | -                    | One crushed schist, one J2 sand                                                                    |
|         | 9/2/-9          | 1                       | -                    | J2 sand                                                                                            |
|         | 9/-9/-9         | 1                       | _                    | J2 sand                                                                                            |

Table K.20. Comparison of binocular and petrographic assignments, by project, the Yuma Wash site.

<sup>a</sup>B = Catalina Petrofacies, E2 = Central Tortolita Petrofacies, E3 = Eastern Tortolita Petrofacies, J1 = Beehive Petrofacies, J2 = Twin Hills Petrofacies, J3 = Wasson Petrofacies, K = Black Mountain Petrofacies, Z = Big Wash Petrofacies.

| Temper Group | Total No.<br>of Samples | Total No.<br>Correct | Petrographic Assignment <sup>a</sup>                                                                                        |
|--------------|-------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 4/-9/-9      | 17                      | -                    | Sands from K, E3, E with volcanics, J2, local unmixed composition (J3), local mixed composition, and north Tucson Mountains |
| 4/1/-9       | 3                       | _                    | J2 sand, one is J3 sand                                                                                                     |
| 4/1/J1       | 1                       | 0                    | Sand from north Tucson Mountains                                                                                            |
| 4/1/J2       | 2                       | 2                    | J2 sand                                                                                                                     |
| 4/2/-9       | 12                      | -                    | Sands from K, E3, E with volcanics, J2, local mixed composition, and north Tucson Mountains                                 |
| 4/2/O        | 3                       | 0                    | Local mixed composition, plus one extrabasinal sample                                                                       |
| 4/3/-9       | 1                       | -                    | B sand                                                                                                                      |
| 4/3/B        | 1                       | 1                    | B sand                                                                                                                      |
| 4/7/-9       | 2                       | -                    | One J3 sand, the other local mixed composition                                                                              |
| 4/30/-9      | 11                      | -                    | Eight local mixed composition, two north Tucson Mountains, and one K sand                                                   |
| 4/30/K       | 10                      | 3                    | Sands from K, J2, E3, local mixed composition, and north Tucson Mountains                                                   |
| 4/40/-9      | 4                       | -                    | Local mixed composition, one E3 sand                                                                                        |
| 4/40/S       | 1                       | 0                    | unknown, possibly extrabasinal                                                                                              |
| 4/41/E2      | 1                       | 1                    | E2 sand                                                                                                                     |
| 4/42/E3      | 4                       | 0                    | Two with local mixed composition, one with north Tucson Mountains, and one with Z sand                                      |
| 4/45/-9      | 4                       | -                    | Two with local mixed composition, one with north Tucson Mountains, and one with E3 sand                                     |
| 4/47/E2      | 1                       | 1                    | E2 sand                                                                                                                     |
| 4/53/-9      | 1                       | _                    | Local unmixed composition (J3)                                                                                              |
| 4/53/J2      | 10                      | 9                    | J2 sand, one is a local unmixed composition (J3)                                                                            |
| 4/54/J3      | 1                       | 1                    | Local unmixed composition (J3)                                                                                              |
| 5/-9/-9      | 2                       | -                    | One with crushed schist, one with grog containing crushed schist                                                            |
| 6/-9/-9      | 1                       | -                    | Grog with crushed schist                                                                                                    |
| 6/2/O        | 1                       | 0                    | Local mixed composition                                                                                                     |
| 6/3/-9       | 2                       | -                    | One with J3 sand, the other with E3 sand                                                                                    |
| 6/40/-9      | 2                       | -                    | One crushed schist, one J2 sand                                                                                             |
| 6/53/J2      | 1                       | 1                    | J2 sand                                                                                                                     |
| 7/5/-9       | 2                       | -                    | One with added crushed rock, the other a local mixed composition                                                            |
| 9.1/54/-9    | 1                       | -                    | J1 sand                                                                                                                     |
| 9.1/54/J3    | 1                       | 1                    | Local unmixed composition (J3)                                                                                              |
| 9/2/-9       | 1                       | -                    | J2 sand                                                                                                                     |
| 9/-9/-9      | 1                       | -                    | J2 sand                                                                                                                     |

| Table K.21. Comparison of binocular and petrographic ass | signments, by temper group, the Yuma Wash site. |
|----------------------------------------------------------|-------------------------------------------------|
|----------------------------------------------------------|-------------------------------------------------|

<sup>a</sup>B = Catalina Petrofacies, E2 = Central Tortolita Petrofacies, E3 = Eastern Tortolita Petrofacies, J1 = Beehive Petrofacies, J2 = Twin Hills Petrofacies, J3 = Wasson Petrofacies, K = Black Mountain Petrofacies, Z = Big Wash Petrofacies.

facies was imported. Pottery undoubtedly imported to the Rillito Fan site comprised a few plain and red ware samples with sand from the Central Tortolita Petrofacies, located 10 km to the north of the site. Thus, unlike the Yuma Wash site, the Rillito Fan site, also situated on an active alluvial fan, occupants appear to have either used sand derived at some distance from the site or imported a majority of the pottery. This may indicate that the locally available sand was not suitable for pottery production, possibly due to the fine size of the grains, and along with the paucity of clay resources, suggests a different pattern of ceramic manufacture.

However, these results are not in direct accordance with those from an earlier study of pottery from the Rillito Fan site that only examined samples

| Wash site.                    |
|-------------------------------|
| the Yuma                      |
| >                             |
| hed sand                      |
| with established sand sources |
|                               |
| data for those sherds         |
|                               |
| characterization              |
| per                           |
| Table K.22. Tem               |

|                          |                              |            | Sherds E     | xamined Uno | Sherds Examined Under Binocular Microscope, by Ware | Aicroscope, by | Ware     |            |            |       |
|--------------------------|------------------------------|------------|--------------|-------------|-----------------------------------------------------|----------------|----------|------------|------------|-------|
|                          | Thin Sections<br>Interpreted |            |              |             | Salado                                              | Brown          | Plain or |            | Mogollon   | E     |
| l'etrotacies             | Accuracy                     | Plain Ware | Ked-on-brown | Ked Ware    | Polychrome                                          | Corrugated     | Ked Ware | brown Ware | brown Ware | lotal |
| Beehive                  |                              |            |              |             |                                                     |                |          |            |            |       |
| 9.1/54/-9                | 1/1 $(100%)$                 | 1          | 2            | 1           | I                                                   | I              | I        | I          | I          | 4     |
| Twin Hills               |                              |            |              |             |                                                     |                |          |            |            |       |
| 4/1/J2                   | 2/2 (100%)                   | 8          | 12           | ı           | I                                                   | I              | ı        | 1          | I          | 21    |
| 4/1/-9                   | 2/3 (67%)                    | 14         | 40           | 1           | 7                                                   | I              | ı        | I          | I          | 57    |
| 4/53/J2                  | 9/10(90%)                    | 110        | 108          | ю           | 7                                                   | 20             | Э        | ı          | I          | 251   |
| 6/53/J2                  | 1/1~(100%)                   | 13         | IJ           | ı           | I                                                   | £              | I        | I          | I          | 21    |
| 9/2/-9                   | 1/1~(100%)                   | £          | 9            | ı           | I                                                   | I              | I        | I          | I          | 6     |
| 6-/6-/6                  | 1/1~(100%)                   | £          | ß            | ı           | I                                                   | I              | I        | I          | I          | 8     |
| Wasson                   |                              |            |              |             |                                                     |                |          |            |            |       |
| 4/53/-9                  | 1/1 $(100%)$                 | 9          | 6            | I           | I                                                   | I              | I        | I          | I          | 15    |
| 4/54/J3                  | 1/1 $(100%)$                 | £          | 4            | I           | I                                                   | I              | I        | I          | I          | 7     |
| 9.1/54/J3                | 1/1 (100%)                   | ю          | I            | I           | I                                                   | I              | I        | I          | I          | ю     |
| Wasson mix               |                              |            |              |             |                                                     |                |          |            |            |       |
| 4/2/O                    | 2/3 (67%)                    | 14         | 69           | С           | 1                                                   | I              | I        | I          | 1          | 88    |
| 4/30/-9                  | 8/11 (73%)                   | 22         | 163          | 1           | 2                                                   | I              | 1        | 1          | I          | 190   |
| 4/40/-9                  | 3/4 (75%)                    | 7          | 18           | I           | I                                                   | I              | I        | I          | I          | 25    |
| 6/2/O                    | 1/1 (100%)                   | ŋ          | I            | I           | 1                                                   | I              | I        | ı          | I          | 9     |
| North Tucson Mountains   |                              |            |              |             |                                                     |                |          |            |            |       |
| 4/1/J1                   | 1/1 (100%)                   | 15         | 26           | 2           | I                                                   | I              | I        | I          | I          | 43    |
| Central Tortolita        |                              |            |              |             |                                                     |                |          |            |            |       |
| 4/41/E2                  | 1/1~(100%)                   | 2          | I            | 1           | I                                                   | I              | I        | I          | I          | С     |
| 4/47/E2                  | 1/1~(100%)                   | ŋ          | I            | 1           | I                                                   | I              | I        | I          | I          | 9     |
| Catalina                 |                              |            |              |             |                                                     |                |          |            |            |       |
| 4/3/B                    | 1/1 (100%)                   | 4          | 4            | 1           | I                                                   | 1              | I        | I          | I          | 10    |
| 4/3/-9                   | 1/1 (100%)                   | 16         | 23           | 2           | I                                                   | 4              | 1        | ı          | I          | 46    |
| Grog with Crushed Schist |                              |            |              |             |                                                     |                |          |            |            |       |
| 6                        | 1/1 (100%)                   | ~          | 2            | 2           | I                                                   | 1              | I        | 7          | I          | 14    |
| Total                    |                              | 261        | 496          | 18          | 13                                                  | 29             | ß        | 4          | 1          | 827   |

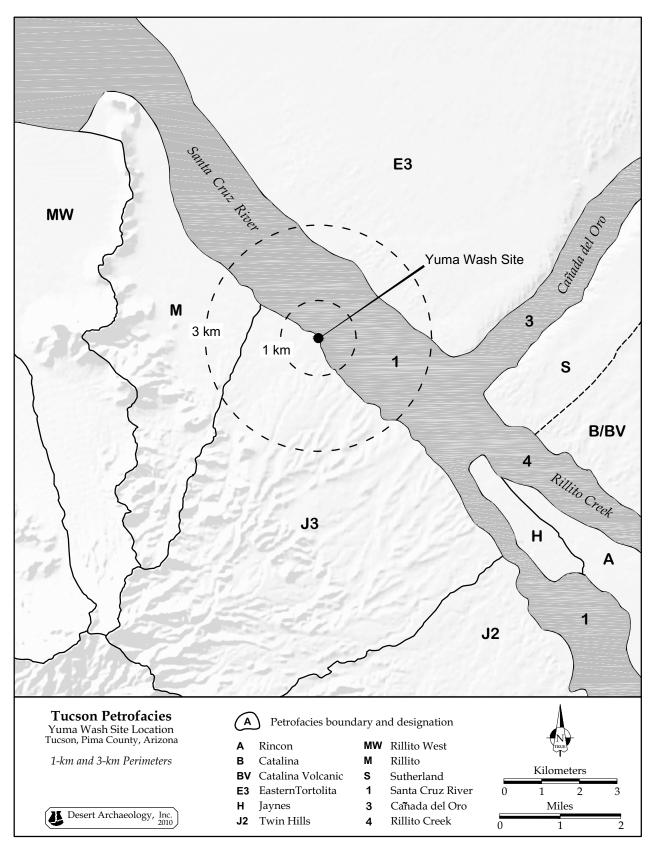



Figure K.4. Location of Yuma Wash site in relation to petrofacies within 1 and 3 km.

through binocular microscopy (Stinson and Heidke 2007)<sup>4</sup>. The results suggested that most of the plain ware samples contained Catalina or Beehive petrofacies sand, with a minor amount made with sand from either the Tortolita<sup>5</sup> or Twin Hills petrofacies. The same pattern was noted for the red wares, although more were made with Twin Hills Petrofacies sand and none had sand from the Tortolita Petrofacies. Decorated wares were also made with sand from these four petrofacies, with the Salado Polychromes mostly having Beehive Petrofacies sand and the Tucson Basin Red-on-brown being dominated by sherds with sand from the Catalina Petrofacies.

Surprisingly, the Tanque Verde Red-on-brown sherds had a temper that could not be assigned to a petrofacies. Based on the results of the current study, it is now suggested that these Rillito Fan vessels may have derived from the Yuma Wash site or been manufactured locally with sand having an unusual composition. Overall, this study also suggested pottery found at the Rillito Fan site was not produced with local sands, but rather, potters may have traveled 5 km to the Catalina and Beehive Petrofacies to collect sand, or pottery was acquired through shortdistance exchange from those areas. The vessels with Twin Hills and Tortolita petrofacies sand are more likely imported to the Rillito Fan site, and this comprises mostly the Salado Polychrome and Tucson Basin Red-on-brown sherds. However, these results need to be petrographically verified, as the analyzed samples in the first study did not identify any sherds tempered with sand from the Catalina and Beehive petrofacies.

Pottery from the Zanardelli site, AZ BB:13:1 (ASM), was investigated petrographically (Heidke and Miksa 2009). While the site is located in the Airport (I) Petrofacies, most of the pottery was found to contain either Black Mountain or Beehive petrofacies sand. Because the Black Mountain Petrofacies is 9.4 km and the Beehive Petrofacies is 14.5 km from the Zanardelli site, both on the other side of the Santa Cruz River, it appears most of the pottery was imported. This may have been due to the local sand resources being unsuitable for pottery production.

The Classic period sites of Rillito Fan and Zanardelli therefore differ from the Yuma Wash site in having pottery that does not contain local sands, which was either produced from resources acquired at some distance, or the vessels came to the sites through short-distance exchange. Interestingly, Beehive Petrofacies sand-tempered pottery was found at all three sites, although in this case, the distance of the sites to that area suggests the pottery was imported. This is surprising, as currently there are no known Classic sites in this area. Pottery with sand from the Twin Hills Petrofacies was found at the Yuma Wash and Rillito Fan sites; this sand is approximately 7 km south of the former and only a short distance from the latter<sup>6</sup>. Further, the site of Rabid Ruin, AZ AA:12:46 (ASM), is located in this petrofacies (see Figure K.3) (Harry 1997). Likewise, pottery made in the Central Tortolita Petrofacies was also present at the Yuma Wash and Rillito Fan sites, but in this case, it suggests importation as the area is located at some distance from both. Finally, sand from the Black Mountain Petrofacies was found in pottery from the Yuma Wash and Zanardelli sites. For both of these sites, the petrofacies is located at some distance and may suggest exchange of pottery manufactured in this area. The San Xavier Bridge site, AZ BB:13:14 (ASM), is located in this petrofacies, and Tanque Verde Red-on-brown pottery from the site was produced with Black Mountain Petrofacies sand (Lombard 1987b). Further, Martinez Hill, AZ BB:13:3 (ASM), is located across the river in the Airport (I) Petrofacies, and the site's potters may have exploited sand resources in the Black Mountain Petrofacies. Overall, there is a pattern of unique production of ceramics and complicated exchange networks for these three Classic period sites.

Uniquely, the Yuma Wash site has pottery produced with sand from many more petrofacies than the other two sites. This may indicate the site was a location for trading pottery from areas producing it, such as those near the Tortolita Mountains and those further south. This would explain the presence at the Yuma Wash site of pottery made in many locations.

#### CONCLUSIONS

The current study has made a considerable advance in our understanding of pottery production and distribution during the Classic period. The identification of an unusual local "mixed" composition sand used to produce pottery at the Yuma Wash site enabled the identification of a local ceramic industry, one that may have been involved in exchange networks in the Tucson Basin. Furthermore, pottery

<sup>&</sup>lt;sup>4</sup>This work utilized the 2003 petrofacies map for the Tucson Basin.

<sup>&</sup>lt;sup>5</sup>At this point, the Tortolita Petrofacies had not been subdivided.

<sup>&</sup>lt;sup>6</sup>The use of sand resources across the Santa Cruz River from an archaeological site has been documented for the Julian Wash site (Sedentary period), located on the eastern side of the Santa Cruz River, which was shown to have used Beehive and Twin Hills petrofacies sand for producing most of the pottery found there (Miksa 2011).

Table K.23. Petrographic results, by ware, the Yuma Wash site.

| Petrofacies              | Plain | Plain Stucco | Flattened<br>Brown | Clapboard<br>Brown | Tucson Basin<br>Tanque Verde<br>Red-on-brown | Late Rincon or<br>Tanque Verde<br>Red-on-brown | Middle Rincon,<br>Late Rincon, or<br>Tanque Verde<br>Red-on-brown | Tucson Basin<br>Red-on-brown<br>Indeterminate | Tortolita Red | Indeterminate<br>Classic Red | Indeterminate<br>Red | Salado<br>Polychrome,<br>Gila | Salado<br>Polychrome,<br>Indeterminate | Indeterminate<br>Mogollon<br>Corrugated | Total |
|--------------------------|-------|--------------|--------------------|--------------------|----------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------|---------------|------------------------------|----------------------|-------------------------------|----------------------------------------|-----------------------------------------|-------|
| Beehive                  | -     | -            | -                  | -                  | -                                            | 1                                              | -                                                                 | -                                             | -             | -                            | _                    | -                             | -                                      | -                                       | 1     |
| Twin Hills               | 7     | 1            | 1                  | 1                  | 8                                            | _                                              | 2                                                                 | _                                             | _             | -                            | -                    | -                             | -                                      | -                                       | 20    |
| Wasson                   | 6     | _            | _                  | _                  | 1                                            | 1                                              | 1                                                                 | _                                             | -             | 1                            | -                    | 1                             | -                                      | -                                       | 11    |
| Wasson mix               | 5     | -            | -                  | -                  | 27                                           | 1                                              | -                                                                 | 1                                             | -             | -                            | _                    | -                             | _                                      | -                                       | 34    |
| North Tucson Mountains   | -     | -            | -                  | -                  | 9                                            | 1                                              | -                                                                 | -                                             | -             | -                            | _                    | -                             | -                                      | -                                       | 10    |
| Black Mountain           | -     | -            | -                  | -                  | 7                                            | 1                                              | -                                                                 | -                                             | -             | -                            | _                    | -                             | -                                      | -                                       | 8     |
| Central Tortolita        | 1     | -            | -                  | -                  | -                                            | -                                              | -                                                                 | -                                             | 1             | -                            | _                    | -                             | -                                      | -                                       | 2     |
| Eastern Tortolita        | 2     | -            | _                  | _                  | 4                                            | 1                                              | -                                                                 | _                                             | -             | _                            | -                    | -                             | _                                      | -                                       | 7     |
| Tortolita with volcanics | -     | _            | _                  | _                  | 2                                            | _                                              | 1                                                                 | _                                             | -             | _                            | 1                    | -                             | _                                      | -                                       | 4     |
| Big Wash                 | 1     | -            | _                  | _                  | -                                            | _                                              | -                                                                 | _                                             | -             | _                            | -                    | -                             | _                                      | -                                       | 1     |
| Catalina                 | -     | -            | -                  | -                  | 1                                            | -                                              | 1                                                                 | -                                             | -             | -                            | _                    | -                             | -                                      | -                                       | 2     |
| Crushed Schist           | 3     | -            | -                  | -                  | -                                            | -                                              | -                                                                 | -                                             | -             | -                            | _                    | -                             | -                                      | -                                       | 3     |
| Extrabasinal             | -     | -            | _                  | -                  | _                                            | _                                              | -                                                                 | _                                             | _             | -                            | -                    | -                             | _                                      | 1                                       | 1     |
| Unknown (Extrabasinal?)  | _     | -            | -                  | _                  | _                                            | _                                              | _                                                                 | _                                             | _             | _                            | -                    | _                             | 1                                      | -                                       | 1     |
| Total                    | 25    | 1            | 1                  | 1                  | 59                                           | 6                                              | 5                                                                 | 1                                             | 1             | 1                            | 1                    | 1                             | 1                                      | 1                                       | 105   |

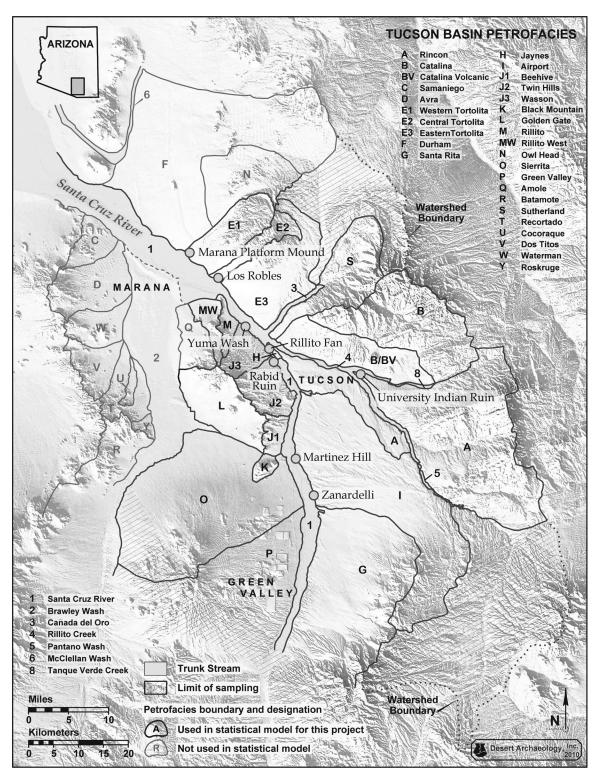



Figure K.5. Large late Classic period sites in the Tucson Basin.

from this period at other sites whose provenance was difficult to establish may benefit from the realization that a unique, fine-grained sand was used for pottery production. This may explain why Tanque Verde Red-on-brown vessels from the Marana

Mound sites were problematic to provenance through petrographic and geochemical methods, a hypothesis that will hopefully be tested through reexamination of this material (Harry 1997). Thus, future analyses of pottery from these sites must now

consider that local ceramic manufacture continued throughout the Classic period, but the sand resources used changed due to a movement of sites closer to the rivers and washes. The late Holocene aggradations of alluvial fans on the Santa Cruz River floodplain, particularly along the Tucson and Tortolita mountains lower piedmonts, may be one reason for the change in settlement location, one which would have provided a diverse range of irrigation strategies. These new locations would have had different sands available for pottery manufacture. The correlation between site location and raw materials is significant and bears on our understanding of pottery production and distribution during a time when site location was changing throughout the Tucson Basin.

# **REFERENCES CITED**

Chronic, Halka

- 1983 *Roadside Geology of Arizona*. Mountain Press Publishing, Missoula, Montana.
- Crown, Patricia L., Larry A. Schwalbe, and J. Ronald London
- X-Ray Fluorescence Analysis of Materials Variability in Las Colinas Ceramics. In *The* 1982-1984 Excavations at Las Colinas: Vol. 4. Material Culture, edited by D. R. Abbott, K. E. Beckwith, P. L. Crown, R. T. Euler, D. A. Gregory, J. R. London, M. B. Saul, L. A. Schwalbe, M. Bernard-Shaw, C. R. Szuter, and A. W. Vokes, pp. 29-72. Archaeological Series No. 162. Arizona State Museum, University of Arizona, Tucson.

Harry, Karen G.

1997 Ceramic Production, Distribution, and Consumption in Two Classic Period Hohokam Communities. Unpublished Ph.D. dissertation, Department of Anthropology, University of Arizona, Tucson.

Heidke, James M.

2011 Prehistoric Pottery Containers from the Julian Wash Site, AZ BB:13:17 (ASM). In Craft Specialization in the Southern Tucson Basin: Archaeological Excavations at the Julian Wash Site, AZ BB:13:17 (ASM): Part 1. Introduction, Excavation Results, and Artifact Investigations, edited by H. D. Wallace, pp. 263-294. Anthropological Papers No. 40. Center for Desert Archaeology, Tucson.

Heidke, James M., and Elizabeth J. Miksa

2011 Sedentary and Late Classic Period Ceramic Production and Distribution in the Southern Tucson Basin: Evidence from the Punta de Agua Site Complex, AZ BB:13:16 (ASM), and the Zanardelli Site, AZ BB:13:1 (ASM). In Archaeological Excavations at the Zanardelli Site, AZ BB:13:1 (ASM), edited by E. C. Ruble, pp. 133-159. Technical Report No. 2004-01. Desert Archaeology, Inc., Tucson.

Huckleberry, Gary A.

2005 Geoarchaeological Assessment of Archaeological Sites and Water-Control Features at Yuma Wash and Vicinity, Marana, Arizona. Ms. on file, Old Pueblo Archaeology Center, Tucson. Katzer, Keith L., and J. H. Schuster

1984 The Quaternary Geology of the Northern Tucson Basin, Arizona, and its Archaeological Implications. Ms. on file, Ernst Antevs Library, Department of Geosciences, University of Arizona, Tucson.

Klecka, William R.

1980 *Discriminant Analysis*. Sage Publications, Beverly Hills, California.

Kring, David A.

2002 Desert Heat, Volcanic Fire: The Geologic History of the Tucson Mountains and Southern Arizona. Digest No. 21. Arizona Geological Society, Tucson.

Lombard, James P.

- 1987a Ceramic Petrography. In *The Archaeology of the San Xavier Bridge Site (AZ BB:13:14), Tucson Basin, Southern Arizona,* edited by J. C. Ravesloot, pp. 335-368. Archaeological Series No. 171. Arizona State Museum, University of Arizona, Tucson.
- 1987b Provenance of Sand Temper in Hohokam Ceramics, Arizona. *Geoarchaeology* 2:91-119.

McKittrick, Mary Anne

1988 Surficial Geologic Maps of the Tucson Metropolitan Area. Open-File Report No. 88-18. Arizona Geological Survey, Tucson.

Miksa, Elizabeth J.

2011 Supplemental Petrographic Data. In *Craft* Specialization in the Southern Tucson Basin: Archaeological Excavations at the Julian Wash Site, AZ BB:13:17 (ASM): Online Supplemental Data, edited by H. D. Wallace. Anthropological Papers No. 40. Center for Desert Archaeology, Tucson.

Miksa, Elizabeth J., and James M. Heidke

2001 It All Comes Out in the Wash: Actualistic Petrofacies Modeling of Temper Provenance, Tonto Basin, Arizona, USA. *Geoarchaeology* 16:177-222.

Nations, J. Dale, and Edmund Stump

1997 *Geology of Arizona.* 2nd ed. Kendall/Hunt Publishing, Dubuque, Iowa.

- Ownby, Mary F., Carlos P. Lavayen, and Elizabeth J. Miksa
- 2010 Binocular and Petrographic Analysis of Pottery from the Rillito Fan Site (AZ AA:12:788). Petrographic Report No. 2010-01. Desert Archaeology, Inc., Tucson.

Stinson, Susan L., and James M. Heidke

2007 Ceramics from the Sunset to Ruthrauff Data Recovery. In Archaeological Investigations at the El Taller, AZ AA:12:92 (ASM), and Rillito Fan, AZ AA:12:788 (ASM), Sites along Eastbound I-10 between Sunset and Ruthrauff Roads, as Part of the I-10 Frontage Road Project, Tucson, Pima County, Arizona, edited by H. Wöcherl, pp. 63-82. Technical Report No. 2003-08. Desert Archaeology, Inc., Tucson. Woodson, M. Kyle

2011 Hohokam Pottery Production Areas and the Organization of Ceramic Production and Exchange in the Phoenix Basin. *Journal of Arizona Archaeology* 1(2): 128-147.